Skip to main content

Advertisement

Log in

Mutations in EGFR, BRAF and RAS are rare in triple-negative and basal-like breast cancers from Caucasian women

  • Brief Report
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Basal-like and triple-negative breast cancers usually display a high level of genomic instability and often carry TP53 mutations. Mutations in EGFR have been reported in about 10 % triple-negative tumours from Chinese women, and there is some evidence that triple-negative and basal-like tumours might carry additional mutations against which targeted therapies are available. We, therefore, sought to determine the frequency of 238 targetable mutations in 19 oncogenes (including EGFR) in a panel of basal-like and triple-negative breast cancers from Caucasian women. We used the OncoCarta panel to screen for 238 mutations across 19 common oncogenes in 107 basal-like and triple-negative breast cancers from Caucasian women. Mutations were then verified using Sanger sequencing or primer extension by iPLEX. We identified and validated 10 mutations across five genes. Most of the mutations were observed in the PIK3CA gene (18/107, 16.8 %), while mutations in KRAS, NRAS, MET and AKT1 were present in only one tumour each (1/107, 0.9 %). Among the missense substitutions in PIK3CA the point mutation resulting in the amino acid change H1047R was the most frequent (8/18, 44 %). All mutations were mutually exclusive, apart from one basal-like breast tumour which harboured mutations in both MET (p.T992I) and PIK3CA (p.H1047R). We did not identify any mutations in the EGFR gene. In conclusion, we found that with the exception of mutations in PIK3CA, these actionable oncogenic mutations on the Oncocarta panel are rare in basal-like and triple-negative breast cancers from Caucasian women. Custom panels, designed to detect mutations identified by exome sequencing of basal-like and triple-negative breast cancers, are, therefore, needed to identify women who might be eligible for targeted treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Li CI, Uribe DJ, Daling JR (2005) Clinical characteristics of different histologic types of breast cancer. Br J Cancer 93(9):1046–1052

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. Walker RA (2008) Immunohistochemical markers as predictive tools for breast cancer. J Clin Pathol 61(6):689–696

    Article  CAS  PubMed  Google Scholar 

  3. Weigelt B, Reis-Filho JS (2009) Histological and molecular types of breast cancer: is there a unifying taxonomy? Nat Rev Clin Oncol 6(12):718–730

    Article  CAS  PubMed  Google Scholar 

  4. Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA et al (2000) Molecular portraits of human breast tumours. Nature 406(6797):747–752

    Article  CAS  PubMed  Google Scholar 

  5. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS et al (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA 98(19):10869–10874

    Article  CAS  PubMed  Google Scholar 

  6. TCGA (2012) Comprehensive molecular portraits of human breast tumours. Nature 490(7418):61–70

    Article  Google Scholar 

  7. Wesolowski R, Ramaswamy B (2011) Gene expression profiling: changing face of breast cancer classification and management. Gene Expr 15(3):105–115

    Article  PubMed Central  PubMed  Google Scholar 

  8. Banerjee S, Reis-Filho JS, Ashley S, Steele D, Ashworth A, Lakhani SR, Smith IE (2006) Basal-like breast carcinomas: clinical outcome and response to chemotherapy. J Clin Pathol 59(7):729–735

    Article  CAS  PubMed  Google Scholar 

  9. Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S et al (2006) Race, breast cancer subtypes, and survival in the carolina breast cancer study. JAMA 295(21):2492–2502

    Article  CAS  PubMed  Google Scholar 

  10. Cheang MC, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, Perou CM, Nielsen TO (2008) Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 14(5):1368–1376

    Article  CAS  PubMed  Google Scholar 

  11. Livasy CA, Karaca G, Nanda R, Tretiakova MS, Olopade OI, Moore DT, Perou CM (2006) Phenotypic evaluation of the basal-like subtype of invasive breast carcinoma. Mod Pathol 19(2):264–271

    Article  CAS  PubMed  Google Scholar 

  12. Nielsen TO, Hsu FD, Jensen K, Cheang M, Karaca G, Hu Z, Hernandez-Boussard T, Livasy C, Cowan D, Dressler L et al (2004) Immunohistochemical and clinical characterization of the basal-like subtype of invasive breast carcinoma. Clin Cancer Res 10(16):5367–5374

    Article  CAS  PubMed  Google Scholar 

  13. Rakha EA, El-Rehim DA, Paish C, Green AR, Lee AH, Robertson JF, Blamey RW, Macmillan D, Ellis IO (2006) Basal phenotype identifies a poor prognostic subgroup of breast cancer of clinical importance. Eur J Cancer 42(18):3149–3156

    Article  CAS  PubMed  Google Scholar 

  14. Rakha EA, Elsheikh SE, Aleskandarany MA, Habashi HO, Green AR, Powe DG, El-Sayed ME, Benhasouna A, Brunet JS, Akslen LA et al (2009) Triple-negative breast cancer: distinguishing between basal and nonbasal subtypes. Clin Cancer Res 15(7):2302–2310

    Article  CAS  PubMed  Google Scholar 

  15. Fulford LG, Easton DF, Reis-Filho JS, Sofronis A, Gillett CE, Lakhani SR, Hanby A (2006) Specific morphological features predictive for the basal phenotype in grade 3 invasive ductal carcinoma of breast. Histopathology 49(1):22–34

    Article  CAS  PubMed  Google Scholar 

  16. Fulford LG, Reis-Filho JS, Ryder K, Jones C, Gillett CE, Hanby A, Easton D, Lakhani SR (2007) Basal-like grade III invasive ductal carcinoma of the breast: patterns of metastasis and long-term survival. Breast Cancer Res 9(1):R4

    Article  PubMed Central  PubMed  Google Scholar 

  17. Bertucci F, Finetti P, Cervera N, Esterni B, Hermitte F, Viens P, Birnbaum D (2008) How basal are triple-negative breast cancers? Int J Cancer 123(1):236–240

    Article  CAS  PubMed  Google Scholar 

  18. Nogi H, Kobayashi T, Suzuki M, Tabei I, Kawase K, Toriumi Y, Fukushima H, Uchida K (2009) EGFR as paradoxical predictor of chemosensitivity and outcome among triple-negative breast cancer. Oncol Rep 21(2):413–417

    CAS  PubMed  Google Scholar 

  19. Sutton LM, Han JS, Molberg KH, Sarode VR, Cao D, Rakheja D, Sailors J, Peng Y (2010) Intratumoral expression level of epidermal growth factor receptor and cytokeratin 5/6 is significantly associated with nodal and distant metastases in patients with basal-like triple-negative breast carcinoma. Am J Clin Pathol 134(5):782–787

    Article  CAS  PubMed  Google Scholar 

  20. Corkery B, Crown J, Clynes M, O’Donovan N (2009) Epidermal growth factor receptor as a potential therapeutic target in triple-negative breast cancer. Ann Oncol 20(5):862–867

    Article  CAS  PubMed  Google Scholar 

  21. Baselga J, Albanell J, Ruiz A, Lluch A, Gascon P, Guillem V, Gonzalez S, Sauleda S, Marimon I, Tabernero JM et al (2005) Phase II and tumor pharmacodynamic study of gefitinib in patients with advanced breast cancer. J Clin Oncol 23(23):5323–5333

    Article  CAS  PubMed  Google Scholar 

  22. Bernsdorf M, Ingvar C, Jorgensen L, Tuxen MK, Jakobsen EH, Saetersdal A, Kimper-Karl ML, Kroman N, Balslev E, Ejlertsen B (2011) Effect of adding gefitinib to neoadjuvant chemotherapy in estrogen receptor negative early breast cancer in a randomized phase II trial. Breast Cancer Res Treat 126(2):463–470

    Article  CAS  PubMed  Google Scholar 

  23. Carey LA, Rugo HS, Marcom PK, Mayer EL, Esteva FJ, Ma CX, Liu MC, Storniolo AM, Rimawi MF, Forero-Torres A et al (2012) TBCRC 001: randomized phase II study of cetuximab in combination with carboplatin in stage IV triple-negative breast cancer. J Clin Oncol 30(21):2615–2623

    Article  CAS  PubMed  Google Scholar 

  24. Finn RS, Gagnon R, Di Leo A, Press MF, Arbushites M, Koehler M (2009) Prognostic and predictive value of HER2 extracellular domain in metastatic breast cancer treated with lapatinib and paclitaxel in a randomized phase III study. J Clin Oncol 27(33):5552–5558

    Article  CAS  PubMed  Google Scholar 

  25. Green MD, Francis PA, Gebski V, Harvey V, Karapetis C, Chan A, Snyder R, Fong A, Basser R, Forbes JF (2009) Gefitinib treatment in hormone-resistant and hormone receptor-negative advanced breast cancer. Ann Oncol 20(11):1813–1817

    Article  CAS  PubMed  Google Scholar 

  26. Crown J, O’Shaughnessy J, Gullo G (2012) Emerging targeted therapies in triple-negative breast cancer. Ann Oncol 23(Suppl 6):vi56–vi65

    Article  PubMed  Google Scholar 

  27. Shastry M, Yardley DA (2013) Updates in the treatment of basal/triple-negative breast cancer. Curr Opin Obstet Gynecol 25(1):40–48

    Article  PubMed  Google Scholar 

  28. Dent R, Trudeau M, Pritchard KI, Hanna WM, Kahn HK, Sawka CA, Lickley LA, Rawlinson E, Sun P, Narod SA (2007) Triple-negative breast cancer: clinical features and patterns of recurrence. Clin Cancer Res 13(15 Pt 1):4429–4434

    Article  PubMed  Google Scholar 

  29. Calza S, Hall P, Auer G, Bjohle J, Klaar S, Kronenwett U, Liu ET, Miller L, Ploner A, Smeds J et al (2006) Intrinsic molecular signature of breast cancer in a population-based cohort of 412 patients. Breast Cancer Res 8(4):R34

    Article  PubMed Central  PubMed  Google Scholar 

  30. Banerji S, Cibulskis K, Rangel-Escareno C, Brown KK, Carter SL, Frederick AM, Lawrence MS, Sivachenko AY, Sougnez C, Zou L et al (2012) Sequence analysis of mutations and translocations across breast cancer subtypes. Nature 486(7403):405–409

    Article  CAS  PubMed  Google Scholar 

  31. Stephens PJ, Tarpey PS, Davies H, Van Loo P, Greenman C, Wedge DC, Nik-Zainal S, Martin S, Varela I, Bignell GR et al (2012) The landscape of cancer genes and mutational processes in breast cancer. Nature 486(7403):400–404

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Wood LD, Parsons DW, Jones S, Lin J, Sjoblom T, Leary RJ, Shen D, Boca SM, Barber T, Ptak J et al (2007) The genomic landscapes of human breast and colorectal cancers. Science 318(5853):1108–1113

    Article  CAS  PubMed  Google Scholar 

  33. Shah SP, Roth A, Goya R, Oloumi A, Ha G, Zhao Y, Turashvili G, Ding J, Tse K, Haffari G et al (2012) The clonal and mutational evolution spectrum of primary triple-negative breast cancers. Nature 486(7403):395–399

    CAS  PubMed  Google Scholar 

  34. Hollestelle A, Elstrodt F, Nagel JH, Kallemeijn WW, Schutte M (2007) Phosphatidylinositol-3-OH kinase or RAS pathway mutations in human breast cancer cell lines. Mol Cancer Res 5(2):195–201

    Article  CAS  PubMed  Google Scholar 

  35. Teng YH, Tan WJ, Thike AA, Cheok PY, Tse GM, Wong NS, Yip GW, Bay BH, Tan PH (2011) Mutations in the epidermal growth factor receptor (EGFR) gene in triple-negative breast cancer: possible implications for targeted therapy. Breast Cancer Res 13(2):R35

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Grob TJ, Heilenkotter U, Geist S, Paluchowski P, Wilke C, Jaenicke F, Quaas A, Wilczak W, Choschzick M, Sauter G et al (2012) Rare oncogenic mutations of predictive markers for targeted therapy in triple-negative breast cancer. Breast Cancer Res Treat 134(2):561–567

    Article  CAS  PubMed  Google Scholar 

  37. Jacot W, Lopez-Crapez E, Thezenas S, Senal R, Fina F, Bibeau F, Romieu G, Lamy PJ (2011) Lack of EGFR-activating mutations in European patients with triple-negative breast cancer could emphasise geographic and ethnic variations in breast cancer mutation profiles. Breast Cancer Res 13(6):R133

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Nakajima H, Ishikawa Y, Furuya M, Sano T, Ohno Y, Horiguchi J, Oyama T (2012) Protein expression, gene amplification, and mutational analysis of EGFR in triple-negative breast cancer. Breast Cancer. doi:10.1007/s12282-012-0354-1

  39. Toyama T, Yamashita H, Kondo N, Okuda K, Takahashi S, Sasaki H, Sugiura H, Iwase H, Fujii Y (2008) Frequently increased epidermal growth factor receptor (EGFR) copy numbers and decreased BRCA1 mRNA expression in Japanese triple-negative breast cancers. BMC Cancer 8:309

    Article  PubMed Central  PubMed  Google Scholar 

  40. Santarpia L, Qi Y, Stemke-Hale K, Wang B, Young EJ, Booser DJ, Holmes FA, O’Shaughnessy J, Hellerstedt B, Pippen J et al (2012) Mutation profiling identifies numerous rare drug targets and distinct mutation patterns in different clinical subtypes of breast cancers. Breast Cancer Res Treat 134(1):333–343

    Article  CAS  PubMed  Google Scholar 

  41. Da Silva L, Simpson PT, Smart CE, Cocciardi S, Waddell N, Lane A, Morrison BJ, Vargas AC, Healey S, Beesley J et al (2010) HER3 and downstream pathways are involved in colonization of brain metastases from breast cancer. Breast Cancer Res 12(4):R46

    Article  PubMed Central  PubMed  Google Scholar 

  42. Thomas RK, Baker AC, Debiasi RM, Winckler W, Laframboise T, Lin WM, Wang M, Feng W, Zander T, MacConaill L et al (2007) High-throughput oncogene mutation profiling in human cancer. Nat Genet 39(3):347–351

    Article  CAS  PubMed  Google Scholar 

  43. TCGA (2011) Integrated genomic analyses of ovarian carcinoma. Nature 474(7353):609–615

    Article  Google Scholar 

  44. van Puijenbroek M, Dierssen JW, Stanssens P, van Eijk R, Cleton-Jansen AM, van Wezel T, Morreau H (2005) Mass spectrometry-based loss of heterozygosity analysis of single-nucleotide polymorphism loci in paraffin embedded tumors using the MassEXTEND assay: single-nucleotide polymorphism loss of heterozygosity analysis of the protein tyrosine phosphatase receptor type J in familial colorectal cancer. J Mol Diagn 7(5):623–630

    Article  PubMed Central  PubMed  Google Scholar 

  45. Hollestelle A, Nagel JH, Smid M, Lam S, Elstrodt F, Wasielewski M, Ng SS, French PJ, Peeters JK, Rozendaal MJ et al (2010) Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines. Breast Cancer Res Treat 121(1):53–64

    Article  PubMed  Google Scholar 

  46. Carpten JD, Faber AL, Horn C, Donoho GP, Briggs SL, Robbins CM, Hostetter G, Boguslawski S, Moses TY, Savage S et al (2007) A transforming mutation in the pleckstrin homology domain of AKT1 in cancer. Nature 448(7152):439–444

    Article  CAS  PubMed  Google Scholar 

  47. Kan Z, Jaiswal BS, Stinson J, Janakiraman V, Bhatt D, Stern HM, Yue P, Haverty PM, Bourgon R, Zheng J et al (2010) Diverse somatic mutation patterns and pathway alterations in human cancers. Nature 466(7308):869–873

    Article  CAS  PubMed  Google Scholar 

  48. Stephens P, Edkins S, Davies H, Greenman C, Cox C, Hunter C, Bignell G, Teague J, Smith R, Stevens C et al (2005) A screen of the complete protein kinase gene family identifies diverse patterns of somatic mutations in human breast cancer. Nat Genet 37(6):590–592

    Article  CAS  PubMed  Google Scholar 

  49. Graveel CR, DeGroot JD, Su Y, Koeman J, Dykema K, Leung S, Snider J, Davies SR, Swiatek PJ, Cottingham S et al (2009) Met induces diverse mammary carcinomas in mice and is associated with human basal breast cancer. Proc Natl Acad Sci USA 106(31):12909–12914

    Article  CAS  PubMed  Google Scholar 

  50. Gastaldi S, Comoglio PM, Trusolino L (2010) The met oncogene and basal-like breast cancer: another culprit to watch out for? Breast Cancer Res 12(4):208

    Article  PubMed Central  PubMed  Google Scholar 

  51. Janne PA, Johnson BE (2006) Effect of epidermal growth factor receptor tyrosine kinase domain mutations on the outcome of patients with non-small cell lung cancer treated with epidermal growth factor receptor tyrosine kinase inhibitors. Clin Cancer Res 12(14 Pt 2):4416s–4420s

    Article  PubMed  Google Scholar 

  52. Shigematsu H, Lin L, Takahashi T, Nomura M, Suzuki M, Wistuba II, Fong KM, Lee H, Toyooka S, Shimizu N et al (2005) Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst 97(5):339–346

    Article  CAS  PubMed  Google Scholar 

  53. Wikman H, Lamszus K, Detels N, Uslar L, Wrage M, Benner C, Hohensee I, Ylstra B, Eylmann K, Zapatka M et al (2012) Relevance of PTEN loss in brain metastasis formation in breast cancer patients. Breast Cancer Res 14(2):R49

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This project was supported by a grant from the National Breast Cancer Foundation. In addition, PTS is funded by a fellowship from the National Breast Cancer Foundation, Australia; GCT is a Senior Principal Research Fellow of the NHMRC. ET was supported by the Max Weber-Programm des Freistaates Bayern zur Hochbegabtenförderung nach dem Bayerischen Eliteförderungsgesetz” of the State of Bavaria and a grant from the Deans’ Office of the faculty for chemistry and pharmacy of the Ludwig-Maximilians University.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Chenevix Trench.

Additional information

E. Tilch and T. Seidens have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tilch, E., Seidens, T., Cocciardi, S. et al. Mutations in EGFR, BRAF and RAS are rare in triple-negative and basal-like breast cancers from Caucasian women. Breast Cancer Res Treat 143, 385–392 (2014). https://doi.org/10.1007/s10549-013-2798-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-013-2798-1

Keywords

Navigation