Skip to main content

Advertisement

Log in

Epigenome-wide methylation in DNA from peripheral blood as a marker of risk for breast cancer

  • Epidemiology
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Aberrant DNA methylation is a key feature of breast carcinoma. We aimed to test the association between breast cancer risk and epigenome-wide methylation in DNA from peripheral blood. Nested case–control study within the prospective Melbourne Collaborative Cohort Study. DNA was extracted from before-diagnosis blood samples (420 incident cases and matched controls). Methylation was measured with the Illumina Infinium Human Methylation 450 BeadChip array. Odds ratio (OR) for epigenome-wide methylation, quantified as the mean beta values across the CpGs, in relation to breast cancer risk were estimated using conditional logistic regression. Overall, the OR for breast cancer was 0.42 (95 % CI 0.20–0.90) for the top versus bottom quartile of epigenome-wide DNA methylation and the OR for a one standard deviation increment was 0.69 (95 % CI 0.50–0.95; test for linear trend, p = 0.02). Epigenome-wide DNA methylation of CpGs within functional promoters was associated with an increased risk, whereas epigenome-wide DNA methylation of genomic regions outside promoters was associated with decreased risk (test for heterogeneity, p = 0.0002). The increased risk associated with epigenome-wide DNA methylation in functional promoters did not vary by time between blood collection and diagnosis, whereas the inverse association with epigenome-wide DNA methylation outside functional promoters was strongest when the interval from blood collection to diagnosis was less than 5 years and weakest for the longest interval. Epigenome-wide methylation in DNA extracted from peripheral blood collected before diagnosis may have potential utility as markers of breast cancer risk and for early detection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Das PM, Singal R (2004) DNA methylation and cancer. J Clin Oncol 22(22):4632–4642

    Article  CAS  PubMed  Google Scholar 

  2. Kulis M, Esteller M (2010) DNA methylation and cancer. Adv Genet 70:27–56

    Article  PubMed  Google Scholar 

  3. Phillips, T (2008) The role of methylation in gene expression. Nat Educ 1(1):116

    Google Scholar 

  4. Wilson AS, Power BE, Molloy PL (2007) DNA hypomethylation and human diseases. Biochim Biophys Acta 1775(1):138–162

    CAS  PubMed  Google Scholar 

  5. Hinshelwood RA, Clark SJ (2008) Breast cancer epigenetics: normal human mammary epithelial cells as a model system. J Mol Med (Berl) 86(12):1315–1328

    Article  Google Scholar 

  6. Jovanovic J, Ronneberg JA, Tost J, Kristensen V (2010) The epigenetics of breast cancer. Mol Oncol 4(3):242–254

    Article  CAS  PubMed  Google Scholar 

  7. Kristiansen S, Jorgensen LM, Guldberg P, Soletormos G (2013) Aberrantly methylated DNA as a biomarker in breast cancer. Int J Biol Markers 28(2):141–150

    Article  CAS  PubMed  Google Scholar 

  8. Szyf M (2012) DNA methylation signatures for breast cancer classification and prognosis. Genome Med 4(3):26

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Fang F, Turcan S, Rimner A, Kaufman A, Giri D, Morris LG et al (2011) Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci Transl Med 3(75):75ra25

    Article  PubMed Central  PubMed  Google Scholar 

  10. Zhuang J, Jones A, Lee SH, Ng E, Fiegl H, Zikan M et al (2012) The dynamics and prognostic potential of DNA methylation changes at stem cell gene loci in women’s cancer. PLoS Genet 8(2):e1002517

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Xu Z, Bolick SC, DeRoo LA, Weinberg CR, Sandler DP, Taylor JA (2013) Epigenome-wide association study of breast cancer using prospectively collected sister study samples. J Natl Cancer Inst 105(10):694–700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Shenker, N.S., S. Polidoro, K. van Veldhoven, C. Sacerdote, F. Ricceri, M.A. Birrell, et al. (2012).Epigenome-wide association study in the european prospective investigation into cancer and nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking. Human Mol Genet p. dds488

  13. Anjum S, Fourkala E-O, Zikan M, Wong A, Gentry-Maharaj A, Jones A et al (2014) A BRCA1-mutation associated DNA methylation signature in blood cells predicts sporadic breast cancer incidence and survival. Genome Med 6(6):47

    Article  PubMed Central  PubMed  Google Scholar 

  14. Fackler MJ, Malone K, Zhang Z, Schilling E, Garrett-Mayer E, Swift-Scanlan T et al (2006) Quantitative multiplex methylation-specific PCR analysis doubles detection of tumor cells in breast ductal fluid. Clin Cancer Res 12(11 Pt 1):3306–3310

    Article  CAS  PubMed  Google Scholar 

  15. Hoque MO, Feng Q, Toure P, Dem A, Critchlow CW, Hawes SE et al (2006) Detection of aberrant methylation of four genes in plasma DNA for the detection of breast cancer. J Clin Oncol 24(26):4262–4269

    Article  CAS  PubMed  Google Scholar 

  16. Horvath S, Zhang Y, Langfelder P, Kahn RS, Boks MP, van Eijk K et al (2012) Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol 13(10):R97

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Lim U, Flood A, Choi SW, Albanes D, Cross AJ, Schatzkin A et al (2008) Genomic methylation of leukocyte DNA in relation to colorectal adenoma among asymptomatic women. Gastroenterology 134(1):47–55

    Article  PubMed Central  PubMed  Google Scholar 

  18. Pufulete M, Al-Ghnaniem R, Leather AJ, Appleby P, Gout S, Terry C et al (2003) Folate status, genomic DNA hypomethylation, and risk of colorectal adenoma and cancer: a case control study. Gastroenterology 124(5):1240–1248

    Article  CAS  PubMed  Google Scholar 

  19. Hsiung DT, Marsit CJ, Houseman EA, Eddy K, Furniss CS, McClean MD et al (2007) Global DNA methylation level in whole blood as a biomarker in head and neck squamous cell carcinoma. Cancer Epidemiol Biomark Prev 16(1):108–114

    Article  Google Scholar 

  20. Moore LE, Pfeiffer RM, Poscablo C, Real FX, Kogevinas M, Silverman D et al (2008) Genomic DNA hypomethylation as a biomarker for bladder cancer susceptibility in the Spanish bladder cancer study: a case–control study. Lancet Oncol 9(4):359–366

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Brennan K, Garcia-Closas M, Orr N, Fletcher O, Jones M, Ashworth A et al (2012) Intragenic ATM methylation in peripheral blood DNA as a biomarker of breast cancer risk. Cancer Res 72(9):2304–2313

    Article  CAS  PubMed  Google Scholar 

  22. Choi JY, James SR, Link PA, McCann SE, Hong CC, Davis W et al (2009) Association between global DNA hypomethylation in leukocytes and risk of breast cancer. Carcinogenesis 30(11):1889–1897

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Delgado-Cruzata L, Wu HC, Perrin M, Liao Y, Kappil MA, Ferris JS et al (2012) Global DNA methylation levels in white blood cell DNA from sisters discordant for breast cancer from the New York site of the breast cancer family registry. Epigenetics 7(8):868–874

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Xu X, Gammon MD, Hernandez-Vargas H, Herceg Z, Wetmur JG, Teitelbaum SL et al (2012) DNA methylation in peripheral blood measured by LUMA is associated with breast cancer in a population-based study. FASEB J 26(6):2657–2666

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Sandoval J, Heyn H, Moran S, Serra-Musach J, Pujana MA, Bibikova M et al (2011) Validation of a DNA methylation microarray for 450,000 CpG sites in the human genome. Epigenetics 6(6):692–702

    Article  CAS  PubMed  Google Scholar 

  26. Clark C, Palta P, Joyce CJ, Scott C, Grundberg E, Deloukas P et al (2012) A comparison of the whole genome approach of MeDIP-seq to the targeted approach of the Infinium Human Methylation450 BeadChip((R)) for methylome profiling. PLoS One 7(11):e50233

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH et al (2012) DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinform 13:86

    Article  Google Scholar 

  28. Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW et al (2013) Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics 8(2):203–209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Laird PW (2003) The power and the promise of DNA methylation markers. Nat Rev Cancer 3(4):253–266

    Article  CAS  PubMed  Google Scholar 

  30. Woo HD, Kim J (2012) Global DNA hypomethylation in peripheral blood leukocytes as a biomarker for cancer risk: a meta-analysis. PLoS One 7(4):e34615

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Ostertag EM, Kazazian HH Jr (2001) Biology of mammalian L1 retrotransposons. Annu Rev Genet 35:501–538

    Article  CAS  PubMed  Google Scholar 

  32. Hoffmann MJ, Schulz WA (2005) Causes and consequences of DNA hypomethylation in human cancer. Biochem Cell Biol 83(3):296–321

    Article  CAS  PubMed  Google Scholar 

  33. Horard B, Eymery A, Fourel G, Vassetzky N, Puechberty J, Roizes G et al (2009) Global analysis of DNA methylation and transcription of human repetitive sequences. Epigenetics 4(5):339–350

    Article  CAS  PubMed  Google Scholar 

  34. Wu HC, Wang Q, Yang HI, Tsai WY, Chen CJ, Santella RM (2012) Global DNA methylation levels in white blood cells as a biomarker for hepatocellular carcinoma risk: a nested case–control study. Carcinogenesis 33(7):1340–1345

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Riboli E, Kaaks R (1997) The EPIC project: rationale and study design. European prospective investigation into cancer and nutrition. Int J Epidemiol 26(suppl 1):S6

    Article  PubMed  Google Scholar 

  36. Michailidou, K, Hall P, Gonzalez-Neira A, Ghoussaini M, Dennis J, Milne RL et al (2013) Large-scale genotyping identifies 41 new loci associated with breast cancer risk. Nat Genet 45(4):353–361

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Severi G, Byrnes GB, Hopper JL (2008) Five genetic variants associated with prostate cancer. N Engl J Med 358(25):2739–2740

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to express our gratitude to the many thousands of Melbourne residents who continue to participate in the Melbourne Collaborative Cohort Study, the original investigators, program managers and the diligent team who recruited the participants and who continue working on follow-up. The methylation measures were conducted by the Australian Genome Research Facility (AGRF) in Melbourne. This work was supported by grants from the National Health and Medical Research Council (Grant number 1011618); and the Victorian Breast Cancer Research Consortium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Baglietto.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Severi, G., Southey, M.C., English, D.R. et al. Epigenome-wide methylation in DNA from peripheral blood as a marker of risk for breast cancer. Breast Cancer Res Treat 148, 665–673 (2014). https://doi.org/10.1007/s10549-014-3209-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-014-3209-y

Keywords

Navigation