Skip to main content

Advertisement

Log in

Differential effects of superoxide dismutase and superoxide dismutase/catalase mimetics on human breast cancer cells

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Reactive oxygen species (ROS) such as superoxide and hydrogen peroxide (H2O2) have been implicated in development and progression of breast cancer. In the present study, we have evaluated the effects of the superoxide dismutase (SOD) mimetic MnTmPyP and the SOD/catalase mimetic EUK 134 on superoxide and H2O2 formation as well as proliferation, adhesion, and migration of MCF-7 and MDA-MB-231 cells. Superoxide and H2O2 production was examined using dihydroethidium and Amplex red assays, respectively. Cell viability and adhesion were measured using a tetrazolium-based MTT assay. Cell proliferation was determined using trypan blue assay. Cell cycle progression was analyzed using flow cytometry. Clonal expansion of a single cell was performed using a colony formation assay. Cell migration was measured using transwell migration assay. Dual luciferase assay was used to determine NF-κB reporter activity. EUK 134 effectively reduced both superoxide and H2O2, whereas MnTmPyP removed superoxide but enhanced H2O2 formation. EUK 134 effectively attenuated viability, proliferation, clonal expansion, adhesion, and migration of MCF-7 and MDA-MB-231 cells. In contrast, MnTmPyP only reduced clonal expansion of MCF-7 and MDA-MB-231 cells but had no effect on adhesion and cell cycle progression. Tumor necrosis factor-alpha-induced NF-κB activity was reduced by EUK 134, whereas MnTmPyP enhanced this activity. These data indicate that the SOD mimetic MnTmPyP and the SOD/catalase mimetic EUK 134 exert differential effects on breast cancer cell growth. Inhibition of H2O2 signaling using EUK 134-like compound might be a promising approach to breast cancer therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EUK 134:

Eukaration-134; chloro[[2,2′-[1,2-ethanediylbis[(nitrilo-κN)methylidyne]]bis[6-methoxyphenolato-κO]]]-manganese

H2O2 :

Hydrogen peroxide

HMEC:

Human dermal microvascular endothelial cells

MnTmPyP:

Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin pentachloride

NF-κB:

Nuclear factor kappa B

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

TNFα:

Tumor necrosis factor-alpha

References

  1. Ahmed A (2010) Prognostic and therapeutic role of nuclear factor-kappa B (NF-kappaB) in breast cancer. JAMC 22:218–221

    PubMed  Google Scholar 

  2. Batinic-Haberle I, Reboucas JS, Spasojevic I (2010) Superoxide dismutase mimics: chemistry, pharmacology, and therapeutic potential. Antioxid Redox Signal 13:877–918. doi:10.1089/ars.2009.2876

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Bours V, Bentires-Alj M, Hellin AC, Viatour P, Robe P, Delhalle S, Benoit V, Merville MP (2000) Nuclear factor-kappa B, cancer, and apoptosis. Biochem Pharmacol 60:1085–1089

    Article  CAS  PubMed  Google Scholar 

  4. Cheng H, Lee SH, Wu S (2013) Effects of N-acetyl-l-cysteine on adhesive strength between breast cancer cell and extracellular matrix proteins after ionizing radiation. Life Sci 93:798–803. doi:10.1016/j.lfs.2013.09.029

    Article  CAS  PubMed  Google Scholar 

  5. Davies KJ (1999) The broad spectrum of responses to oxidants in proliferating cells: a new paradigm for oxidative stress. IUBMB Life 48:41–47. doi:10.1080/713803463

    Article  CAS  PubMed  Google Scholar 

  6. Evans MK, Tovmasyan A, Batinic-Haberle I, Devi GR (2014) Mn porphyrin in combination with ascorbate acts as a pro-oxidant and mediates caspase-independent cancer cell death. Free Radic Biol Med 68:302–314. doi:10.1016/j.freeradbiomed.2013.11.031

    Article  CAS  PubMed  Google Scholar 

  7. Giorgio M, Trinei M, Migliaccio E, Pelicci PG (2007) Hydrogen peroxide: a metabolic by-product or a common mediator of ageing signals? Nature reviews. Mol cell Biol 8:722–728. doi:10.1038/nrm2240

    CAS  Google Scholar 

  8. Glorieux C, Auquier J, Dejeans N, Sid B, Demoulin JB, Bertrand L, Verrax J, Calderon PB (2014) Catalase expression in MCF-7 breast cancer cells is mainly controlled by PI3 K/Akt/mTor signaling pathway. Biochem Pharmacol 89:217–223. doi:10.1016/j.bcp.2014.02.025

    Article  CAS  PubMed  Google Scholar 

  9. Glorieux C, Dejeans N, Sid B, Beck R, Calderon PB, Verrax J (2011) Catalase overexpression in mammary cancer cells leads to a less aggressive phenotype and an altered response to chemotherapy. Biochem Pharmacol 82:1384–1390. doi:10.1016/j.bcp.2011.06.007

    Article  CAS  PubMed  Google Scholar 

  10. Haffner MC, Berlato C, Doppler W (2006) Exploiting our knowledge of NF-kappaB signaling for the treatment of mammary cancer. J Mammary Gland Biol Neoplas 11:63–73. doi:10.1007/s10911-006-9013-5

    Article  Google Scholar 

  11. Hernandez-Aya LF, Gonzalez-Angulo AM (2011) Targeting the phosphatidylinositol 3-kinase signaling pathway in breast cancer. Oncologist 16:404–414. doi:10.1634/theoncologist.2010-0402

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Kattan Z, Minig V, Leroy P, Dauca M, Becuwe P (2008) Role of manganese superoxide dismutase on growth and invasive properties of human estrogen-independent breast cancer cells. Breast Cancer Res Treat 108:203–215. doi:10.1007/s10549-007-9597-5

    Article  CAS  PubMed  Google Scholar 

  13. Kundu N, Zhang S, Fulton AM (1995) Sublethal oxidative stress inhibits tumor cell adhesion and enhances experimental metastasis of murine mammary carcinoma. Clin Exp Metastasis 13:16–22

    Article  CAS  PubMed  Google Scholar 

  14. Liu GS, Tsai HE, Weng WT, Liu LF, Weng CH, Chuang MR, Lam HC, Wu CS, Tee R, Wen ZH, Howng SL, Tai MH (2011) Systemic pro-opiomelanocortin expression induces melanogenic differentiation and inhibits tumor angiogenesis in established mouse melanoma. Hum Gene Ther 22:325–335. doi:10.1089/hum.2010.090

    Article  CAS  PubMed  Google Scholar 

  15. McAuliffe PF, Meric-Bernstam F, Mills GB, Gonzalez-Angulo AM (2010) Deciphering the role of PI3 K/Akt/mTOR pathway in breast cancer biology and pathogenesis. Clin Breast Cancer 10(Suppl 3):S59–S65. doi:10.3816/CBC.2010.s.013

    Article  PubMed  Google Scholar 

  16. Oliveira-Marques V, Marinho HS, Cyrne L, Antunes F (2009) Role of hydrogen peroxide in NF-kappaB activation: from inducer to modulator. Antioxid Redox Signal 11:2223–2243. doi:10.1089/ARS.2009.2601

    Article  CAS  PubMed  Google Scholar 

  17. Oskarsson T (2013) Extracellular matrix components in breast cancer progression and metastasis. Breast 22(Suppl 2):S66–S72. doi:10.1016/j.breast.2013.07.012

    Article  PubMed  Google Scholar 

  18. Peshavariya H, Dusting GJ, Jiang F, Halmos LR, Sobey CG, Drummond GR, Selemidis S (2009) NADPH oxidase isoform selective regulation of endothelial cell proliferation and survival. Naunyn-Schmiedeberg’s Arch Pharmacol 380:193–204. doi:10.1007/s00210-009-0413-0

    Article  CAS  Google Scholar 

  19. Peshavariya HM, Chan EC, Liu GS, Jiang F, Dusting GJ (2014) Transforming growth factor-beta1 requires NADPH oxidase 4 for angiogenesis in vitro and in vivo. J Cell Mol Med. doi:10.1111/jcmm.12263

    PubMed  Google Scholar 

  20. Peshavariya HM, Dusting GJ, Selemidis S (2007) Analysis of dihydroethidium fluorescence for the detection of intracellular and extracellular superoxide produced by NADPH oxidase. Free Radic Res 41:699–712. doi:10.1080/10715760701297354

    Article  CAS  PubMed  Google Scholar 

  21. Peshavariya HM, Liu GS, Chang CW, Jiang F, Chan EC, Dusting GJ (2014) Prostacyclin signaling boosts NADPH oxidase 4 in the endothelium promoting cytoprotection and angiogenesis. Antioxid Redox Signal 20:2710–2725. doi:10.1089/ars.2013.5374

    Article  CAS  PubMed  Google Scholar 

  22. Peshavariya HM, Taylor CJ, Goh C, Liu GS, Jiang F, Chan EC, Dusting GJ (2013) Annexin peptide Ac2-26 suppresses TNFalpha-induced inflammatory responses via inhibition of Rac1-dependent NADPH oxidase in human endothelial cells. PLoS One 8:e60790. doi:10.1371/journal.pone.0060790

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Policastro L, Molinari B, Larcher F, Blanco P, Podhajcer OL, Costa CS, Rojas P, Duran H (2004) Imbalance of antioxidant enzymes in tumor cells and inhibition of proliferation and malignant features by scavenging hydrogen peroxide. Mol Carcinog 39:103–113. doi:10.1002/mc.20001

    Article  CAS  PubMed  Google Scholar 

  24. Prasad S, Ravindran J, Aggarwal BB (2010) NF-kappaB and cancer: how intimate is this relationship. Mol Cell Biochem 336:25–37. doi:10.1007/s11010-009-0267-2

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Punnonen K, Ahotupa M, Asaishi K, Hyoty M, Kudo R, Punnonen R (1994) Antioxidant enzyme activities and oxidative stress in human breast cancer. J Cancer Res Clin Oncol 120:374–377

    Article  CAS  PubMed  Google Scholar 

  26. Rawal RM, Patel PS, Vyas RK, Sainger RN, Shah MH, Peshavariya HM, Patel DD, Bhatavdekar JM (2001) Role of pretherapeutic biomarkers in predicting postoperative radiotherapy response in patients with advanced squamous cell carcinoma. Int J Radiat Biol 77:1141–1146. doi:10.1080/09553000110067788

    Article  CAS  PubMed  Google Scholar 

  27. Rojanasakul Y, Ye J, Chen F, Wang L, Cheng N, Castranova V, Vallyathan V, Shi X (1999) Dependence of NF-kappaB activation and free radical generation on silica-induced TNF-alpha production in macrophages. Mol Cell Biochem 200:119–125

    Article  CAS  PubMed  Google Scholar 

  28. Rosenthal RA, Fish B, Hill RP, Huffman KD, Lazarova Z, Mahmood J, Medhora M, Molthen R, Moulder JE, Sonis ST, Tofilon PJ, Doctrow SR (2011) Salen Mn complexes mitigate radiation injury in normal tissues. Anti-Cancer Agents Med Chem 11:359–372

    Article  CAS  Google Scholar 

  29. Salvemini D, Riley DP, Cuzzocrea S (2002) SOD mimetics are coming of age. Nat Rev Drug Discov 1:367–374. doi:10.1038/nrd796

    Article  CAS  PubMed  Google Scholar 

  30. Sen S, Kawahara B, Chaudhuri G (2012) Maintenance of higher H(2)O(2) levels, and its mechanism of action to induce growth in breast cancer cells: important roles of bioactive catalase and PP2A. Free Radic Biol Med 53:1541–1551. doi:10.1016/j.freeradbiomed.2012.06.030

    Article  CAS  PubMed  Google Scholar 

  31. Sies H (2014) Role of metabolic H2O2 generation: redox signaling and oxidative stress. J Biol Chem 289:8735–8741. doi:10.1074/jbc.R113.544635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Stone JR, Yang S (2006) Hydrogen peroxide: a signaling messenger. Antioxid Redox Signal 8:243–270. doi:10.1089/ars.2006.8.243

    Article  CAS  PubMed  Google Scholar 

  33. Szatrowski TP, Nathan CF (1991) Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 51:794–798

    CAS  PubMed  Google Scholar 

  34. Tas F, Hansel H, Belce A, Ilvan S, Argon A, Camlica H, Topuz E (2005) Oxidative stress in breast cancer. Med Oncol 22:11–15. doi:10.1385/MO:22:1:011

    Article  CAS  PubMed  Google Scholar 

  35. Tochhawng L, Deng S, Pervaiz S, Yap CT (2013) Redox regulation of cancer cell migration and invasion. Mitochondrion 13:246–253. doi:10.1016/j.mito.2012.08.002

    Article  CAS  PubMed  Google Scholar 

  36. Toyokuni S, Okamoto K, Yodoi J, Hiai H (1995) Persistent oxidative stress in cancer. FEBS Lett 358:1–3

    Article  CAS  PubMed  Google Scholar 

  37. Trachootham D, Alexandre J, Huang P (2009) Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nature reviews. Drug Discov 8:579–591. doi:10.1038/nrd2803

    Article  CAS  Google Scholar 

  38. Trachootham D, Lu W, Ogasawara MA, Nilsa RD, Huang P (2008) Redox regulation of cell survival. Antioxid Redox Signal 10:1343–1374. doi:10.1089/ars.2007.1957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Weydert CJ, Waugh TA, Ritchie JM, Iyer KS, Smith JL, Li L, Spitz DR, Oberley LW (2006) Overexpression of manganese or copper-zinc superoxide dismutase inhibits breast cancer growth. Free Radic Biol Med 41:226–237. doi:10.1016/j.freeradbiomed.2006.03.015

    Article  CAS  PubMed  Google Scholar 

  40. Weydert CJ, Zhang Y, Sun W, Waugh TA, Teoh ML, Andringa KK, Aykin-Burns N, Spitz DR, Smith BJ, Oberley LW (2008) Increased oxidative stress created by adenoviral MnSOD or CuZnSOD plus BCNU (1,3-bis(2-chloroethyl)-1-nitrosourea) inhibits breast cancer cell growth. Free Radic Biol Med 44:856–867. doi:10.1016/j.freeradbiomed.2007.11.009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Xiao D, Vogel V, Singh SV (2006) Benzyl isothiocyanate-induced apoptosis in human breast cancer cells is initiated by reactive oxygen species and regulated by Bax and Bak. Mol Cancer Ther 5:2931–2945. doi:10.1158/1535-7163.MCT-06-0396

    Article  CAS  PubMed  Google Scholar 

  42. Ye X, Fels D, Tovmasyan A, Aird KM, Dedeugd C, Allensworth JL, Kos I, Park W, Spasojevic I, Devi GR, Dewhirst MW, Leong KW, Batinic-Haberle I (2011) Cytotoxic effects of Mn(III) N-alkylpyridylporphyrins in the presence of cellular reductant, ascorbate. Free Radic Res 45:1289–1306. doi:10.3109/10715762.2011.616199

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

MHS was supported by postdoctoral Fellowship (KG080837) from the Susan G. Komen Foundation for the Cure, USA. GJD is the recipient of an National Health and Medical Research Council Research Fellowship (#1003113). Authors are thankful to Dr. Rachana Sainger for her extensive reading and suggestions for this manuscript. The Centre for Eye Research Australia, St. Vincent’s Institute of Medical Research and O’Brien Institute acknowledge the Victorian State Government’s Department of Innovation, Industry and Regional Development’s Operational Infrastructure Support Program.

Conflict of interest

The authors confirm that there are no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitesh M. Peshavariya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, M.H., Liu, GS., Thompson, E.W. et al. Differential effects of superoxide dismutase and superoxide dismutase/catalase mimetics on human breast cancer cells. Breast Cancer Res Treat 150, 523–534 (2015). https://doi.org/10.1007/s10549-015-3329-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-015-3329-z

Keywords

Navigation