Skip to main content

Advertisement

Log in

Biomarkers of immunotherapy response in breast cancer beyond PD-L1

  • Review
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Immune checkpoint inhibitors have modified the treatment algorithm in a variety of cancer types, including breast cancer. Nevertheless, optimal selection of ideal candidates to these drugs remains an unmet need. Although PD-L1 expression by immunohistochemistry seems to be the most promising biomarker to date, its predictive ability is far from ideal. Thus, the development of new predictive biomarkers is essential for a better selection of patients. Here, we discuss potential biomarkers beyond PD-L1 that could play an important role in precision cancer immunotherapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Sharma P, Allison JP (2015) The future of immune checkpoint therapy. Science 348:56–61. https://doi.org/10.1126/SCIENCE.AAA8172

    Article  CAS  PubMed  Google Scholar 

  2. Schmid P, Cortes J, Pusztai L et al (2020) Pembrolizumab for early triple-negative breast cancer. N Engl J Med 382:810–821. https://doi.org/10.1056/nejmoa1910549

    Article  CAS  PubMed  Google Scholar 

  3. Loibl S, Untch M, Burchardi N et al (2019) A randomised phase II study investigating durvalumab in addition to an anthracycline taxane-based neoadjuvant therapy in early triple-negative breast cancer: clinical results and biomarker analysis of GeparNuevo study. Ann Oncol 30:1279–1288. https://doi.org/10.1093/annonc/mdz158

    Article  CAS  PubMed  Google Scholar 

  4. Schmid P, Adams S, Rugo HS et al (2018) Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 379:2108–2121. https://doi.org/10.1056/NEJMoa1809615

    Article  CAS  PubMed  Google Scholar 

  5. Schmid P, Adams S, Rugo HS et al (2019) IMpassion130: updated overall survival (OS) from a global, randomized, double-blind, placebo-controlled, Phase III study of atezolizumab (atezo) + nab- paclitaxel (nP) in previously untreated locally advanced or metastatic triple-negative breast ca. J Clin Oncol 37:1003–1003. https://doi.org/10.1200/JCO.2019.37.15_suppl.1003

    Article  Google Scholar 

  6. Cortes J, Cescon DW, Rugo HS et al (2020) KEYNOTE-355: Randomized, double-blind, phase III study of pembrolizumab + chemotherapy versus placebo + chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer. J Clin Oncol 38:1000–1000. https://doi.org/10.1200/jco.2020.38.15_suppl.1000

    Article  Google Scholar 

  7. Cortes J, Cescon DW, Rugo HS et al (2020) Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for previously untreated locally recurrent inoperable or metastatic triple-negative breast cancer (KEYNOTE-355): a randomised, placebo-controlled, double-blind, phase 3 clinical trial. Lancet 396:1817–1828. https://doi.org/10.1016/S0140-6736(20)32531-9

    Article  PubMed  Google Scholar 

  8. Rugo HS, Loi S, Adams S et al (2019) Performance of PD-L1 immunohistochemistry (IHC) assays in unresectable locally advanced or metastatic triple-negative breast cancer (mTNBC): post-hoc analysis of IMpassion130. Ann Oncol 30:v858–v859. https://doi.org/10.1093/annonc/mdz394.009

    Article  Google Scholar 

  9. Schmid P, Salgado R, Park YH et al (2020) Pembrolizumab plus chemotherapy as neoadjuvant treatment of high-risk, early-stage triple-negative breast cancer: results from the phase 1b open-label, multicohort KEYNOTE-173 study. Ann Oncol. https://doi.org/10.1016/j.annonc.2020.01.072

    Article  PubMed  Google Scholar 

  10. Sunshine J, Taube JM (2015) PD-1/PD-L1 inhibitors. Curr Opin Pharmacol 23:32. https://doi.org/10.1016/J.COPH.2015.05.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Brasó-Maristany F, Sansó M, Chic N et al (2021) Case report: a case study documenting the activity of atezolizumab in a PD-L1-negative triple-negative breast cancer. Front Oncol. https://doi.org/10.3389/FONC.2021.710596

    Article  PubMed  PubMed Central  Google Scholar 

  12. Mittendorf EA, Zhang H, Barrios CH et al (2020) Neoadjuvant atezolizumab in combination with sequential nab-paclitaxel and anthracycline-based chemotherapy versus placebo and chemotherapy in patients with early-stage triple-negative breast cancer (IMpassion031): a randomised, double-blind, phase 3 trial. Lancet 396:1090–1100. https://doi.org/10.1016/S0140-6736(20)31953-X

    Article  CAS  PubMed  Google Scholar 

  13. Salgado R, Denkert C, Demaria S et al (2015) The evaluation of tumor-infiltrating lymphocytes (TILs) in breast cancer: recommendations by an International TILs Working Group 2014. Ann Oncol 26:259–271. https://doi.org/10.1093/ANNONC/MDU450

    Article  CAS  PubMed  Google Scholar 

  14. Denkert C, von Minckwitz G, Darb-Esfahani S et al (2018) Tumour-infiltrating lymphocytes and prognosis in different subtypes of breast cancer: a pooled analysis of 3771 patients treated with neoadjuvant therapy. Lancet Oncol 19:40–50. https://doi.org/10.1016/S1470-2045(17)30904-X

    Article  PubMed  Google Scholar 

  15. Stanton SE, Adams S, Disis ML (2016) Variation in the incidence and magnitude of tumor-infiltrating lymphocytes in breast cancer subtypes: a systematic review. JAMA Oncol 2:1354–1360. https://doi.org/10.1001/JAMAONCOL.2016.1061

    Article  PubMed  Google Scholar 

  16. Loi S, Adams S, Schmid P et al (2017) Relationship between tumor infiltrating lymphocyte (TIL) levels and response to pembrolizumab (pembro) in metastatic triple-negative breast cancer (mTNBC): results from KEYNOTE-086. Ann Oncol 28:v608. https://doi.org/10.1093/ANNONC/MDX440.005

    Article  Google Scholar 

  17. Winer EP, Lipatov O, Im SA et al (2021) Pembrolizumab versus investigator-choice chemotherapy for metastatic triple-negative breast cancer (KEYNOTE-119): a randomised, open-label, phase 3 trial. Lancet Oncol 22:499–511. https://doi.org/10.1016/S1470-2045(20)30754-3

    Article  CAS  PubMed  Google Scholar 

  18. Emens LA, Molinero L, Loi S et al (2021) Atezolizumab and nab -paclitaxel in advanced triple-negative breast cancer: biomarker evaluation of the IMpassion130 study. JNCI J Natl Cancer Inst 113:1005–1016. https://doi.org/10.1093/jnci/djab004

    Article  CAS  PubMed  Google Scholar 

  19. Loi S, Giobbie-Hurder A, Gombos A et al (2019) Pembrolizumab plus trastuzumab in trastuzumab-resistant, advanced, HER2-positive breast cancer (PANACEA): a single-arm, multicentre, phase 1b–2 trial. Lancet Oncol 20:371–382. https://doi.org/10.1016/S1470-2045(18)30812-X

    Article  CAS  PubMed  Google Scholar 

  20. Emens LA, Esteva FJ, Beresford M et al (2020) Trastuzumab emtansine plus atezolizumab versus trastuzumab emtansine plus placebo in previously treated, HER2-positive advanced breast cancer (KATE2): a phase 2, multicentre, randomised, double-blind trial. Lancet Oncol 21:1283–1295. https://doi.org/10.1016/S1470-2045(20)30465-4

    Article  CAS  PubMed  Google Scholar 

  21. Salgado R, Denkert C, Campbell C et al (2015) Tumor-infiltrating lymphocytes and associations with pathological complete response and event-free survival in HER2-positive early-stage breast cancer treated with lapatinib and trastuzumab: a secondary analysis of the NeoALTTO trial. JAMA Oncol 1:448–455. https://doi.org/10.1001/jamaoncol.2015.0830

    Article  PubMed  PubMed Central  Google Scholar 

  22. Denkert C, von Minckwitz G, Brase JC et al (2015) Tumor-infiltrating lymphocytes and response to neoadjuvant chemotherapy with or without carboplatin in human epidermal growth factor receptor 2–positive and triple-negative primary breast cancers. J Clin Oncol 33:983–991. https://doi.org/10.1200/JCO.2014.58.1967

    Article  CAS  PubMed  Google Scholar 

  23. Heppner BI, Untch M, Denkert C et al (2016) Tumor-infiltrating lymphocytes: a predictive and prognostic biomarker in neoadjuvant-treated HER2-positive breast cancer. Clin Cancer Res 22:5747–5754. https://doi.org/10.1158/1078-0432.CCR-15-2338

    Article  CAS  Google Scholar 

  24. Issa-Nummer Y, Darb-Esfahani S, Loibl S et al (2013) Prospective validation of immunological infiltrate for prediction of response to neoadjuvant chemotherapy in HER2-negative breast cancer—a substudy of the neoadjuvant geparquinto trial. PLoS ONE 8:e79775. https://doi.org/10.1371/JOURNAL.PONE.0079775

    Article  PubMed  PubMed Central  Google Scholar 

  25. Nuciforo P, Pascual T, Cortés J et al (2018) A predictive model of pathologic response based on tumor cellularity and tumor-infiltrating lymphocytes (CelTIL) in HER2-positive breast cancer treated with chemo-free dual HER2 blockade. Ann Oncol 29:170–177. https://doi.org/10.1093/annonc/mdx647

    Article  CAS  PubMed  Google Scholar 

  26. Chic N, Luen SJ, Nuciforo P et al (2021) Tumor cellularity and infiltrating lymphocytes as a survival surrogate in HER2-positive breast cancer. JNCI J Natl Cancer Inst. https://doi.org/10.1093/JNCI/DJAB057

    Article  Google Scholar 

  27. Kim R, Song N, Gavin P et al (2019) Stromal tumor-infiltrating lymphocytes in NRG oncology/NSABP B-31 adjuvant trial for early-stage HER2-positive breast cancer. J Natl Cancer Inst 111:867–871. https://doi.org/10.1093/JNCI/DJZ032

    Article  PubMed  PubMed Central  Google Scholar 

  28. Krop IE, Paulson J, Campbell C et al (2019) Genomic correlates of response to adjuvant trastuzumab (H) and pertuzumab (P) in HER2+ breast cancer (BC): biomarker analysis of the APHINITY trial. J Clin Oncol 37:1012–1012. https://doi.org/10.1200/JCO.2019.37.15_SUPPL.1012

    Article  Google Scholar 

  29. Loi S, Michiels S, Salgado R et al (2014) Tumor infiltrating lymphocytes are prognostic in triple negative breast cancer and predictive for trastuzumab benefit in early breast cancer: results from the FinHER trial. Ann Oncol 25:1544–1550. https://doi.org/10.1093/ANNONC/MDU112

    Article  CAS  PubMed  Google Scholar 

  30. Criscitiello C, Vingiani A, Maisonneuve P et al (2020) Tumor-infiltrating lymphocytes (TILs) in ER+/HER2− breast cancer. Breast Cancer Res Treat 183:347–354. https://doi.org/10.1007/s10549-020-05771-7

    Article  CAS  PubMed  Google Scholar 

  31. Park JH, Jonas SF, Bataillon G et al (2019) Prognostic value of tumor-infiltrating lymphocytes in patients with early-stage triple-negative breast cancers (TNBC) who did not receive adjuvant chemotherapy. Ann Oncol 30:1941–1949. https://doi.org/10.1093/ANNONC/MDZ395

    Article  CAS  PubMed  Google Scholar 

  32. De Jong VMT, Wang Y, Opdam M et al (2020) 159O Prognostic value of tumour infiltrating lymphocytes in young triple negative breast cancer patients who did not receive adjuvant systemic treatment; by the PARADIGM study group. Ann Oncol 31:S303. https://doi.org/10.1016/J.ANNONC.2020.08.281

    Article  Google Scholar 

  33. Bianchini G, Huang C-S, Egle D et al (2020) LBA13 tumour infiltrating lymphocytes (TILs), PD-L1 expression and their dynamics in the NeoTRIPaPDL1 trial. Ann Oncol 31:S1145–S1146. https://doi.org/10.1016/J.ANNONC.2020.08.2241

    Article  Google Scholar 

  34. Loi S, Dushyanthen S, Beavis PA et al (2016) RAS/MAPK activation is associated with reduced tumor-infiltrating lymphocytes in triple-negative breast cancer: therapeutic cooperation between MEK and PD-1/PD-L1 immune checkpoint inhibitors. Clin Cancer Res 22:1499–1509. https://doi.org/10.1158/1078-0432.CCR-15-1125

    Article  CAS  PubMed  Google Scholar 

  35. Dieci MV, Radosevic-Robin N, Fineberg S et al (2018) Update on tumor-infiltrating lymphocytes (TILs) in breast cancer, including recommendations to assess TILs in residual disease after neoadjuvant therapy and in carcinoma in situ: a report of the International immuno-oncology biomarker working group on breast cancer. Semin Cancer Biol 52:16–25

    Article  PubMed  Google Scholar 

  36. Adams S, Diamond JR, Hamilton E et al (2019) Atezolizumab plus nab-paclitaxel in the treatment of metastatic triple-negative breast cancer with 2-year survival follow-up: a phase 1b clinical trial. JAMA Oncol 5:334–342. https://doi.org/10.1001/JAMAONCOL.2018.5152

    Article  PubMed  Google Scholar 

  37. Asano Y, Kashiwagi S, Goto W et al (2016) Tumour-infiltrating CD8 to FOXP3 lymphocyte ratio in predicting treatment responses to neoadjuvant chemotherapy of aggressive breast cancer. Br J Surg. https://doi.org/10.1002/bjs.10127

    Article  PubMed  Google Scholar 

  38. De AC, Nagi C, Hoyt CC et al (2020) Evaluation of the predictive role of tumor immune infiltrate in patients with HER2-positive breast cancer treated with neoadjuvant anti-HER2 therapy without chemotherapy. Clin Cancer Res 26:738–745. https://doi.org/10.1158/1078-0432.CCR-19-1402

    Article  Google Scholar 

  39. Merino DM, McShane L, Butler M et al (2019) TMB standardization by alignment to reference standards: phase II of the friends of cancer research TMB harmonization project. J Clin Oncol 37:2624–2624. https://doi.org/10.1200/jco.2019.37.15_suppl.2624

    Article  Google Scholar 

  40. Chan TA, Yarchoan M, Jaffee E et al (2019) Development of tumor mutation burden as an immunotherapy biomarker: utility for the oncology clinic. Ann Oncol 30:44–56. https://doi.org/10.1093/ANNONC/MDY495

    Article  CAS  PubMed  Google Scholar 

  41. Havel JJ, Chowell D, Chan TA (2019) The evolving landscape of biomarkers for checkpoint inhibitor immunotherapy. Nat Rev Cancer 19:133–150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Van Allen EM, Miao D, Schilling B et al (2015) Genomic correlates of response to CTLA-4 blockade in metastatic melanoma. Science 350:207–211. https://doi.org/10.1126/science.aad0095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Rizvi NA, Hellmann MD, Snyder A et al (2015) Mutational landscape determines sensitivity to PD-1 blockade in non-small cell lung cancer. Science 348:124–128. https://doi.org/10.1126/science.aaa1348

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yarchoan M, Hopkins A, Jaffee EM (2017) Tumor mutational burden and response rate to PD-1 inhibition. N Engl J Med 377:2500–2501. https://doi.org/10.1056/NEJMc1713444

    Article  PubMed  PubMed Central  Google Scholar 

  45. Marabelle A, Fakih M, Lopez J et al (2020) Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol 21:1353–1365. https://doi.org/10.1016/S1470-2045(20)30445-9

    Article  CAS  PubMed  Google Scholar 

  46. O’Meara TA, Tolaney SM (2021) Tumor mutational burden as a predictor of immunotherapy response in breast cancer. Oncotarget 12:394–400

    Article  PubMed  PubMed Central  Google Scholar 

  47. Barroso-Sousa R, Jain E, Cohen O et al (2020) Prevalence and mutational determinants of high tumor mutation burden in breast cancer. Ann Oncol 31:387–394. https://doi.org/10.1016/j.annonc.2019.11.010

    Article  CAS  PubMed  Google Scholar 

  48. Alva AS, Mangat PK, Garrett-Mayer E et al (2021) Pembrolizumab in patients with metastatic breast cancer with high tumor mutational burden: results from the targeted agent and profiling utilization registry (TAPUR) study. J Clin Oncol 39:2443–2451. https://doi.org/10.1200/JCO.20.02923

    Article  PubMed  Google Scholar 

  49. Winer EP, Lipatov O, Im S-A et al (2020) Association of tumor mutational burden (TMB) and clinical outcomes with pembrolizumab (pembro) versus chemotherapy (chemo) in patients with metastatic triple-negative breast cancer (mTNBC) from KEYNOTE-119. J Clin Oncol 38:1013–1013. https://doi.org/10.1200/jco.2020.38.15_suppl.1013

    Article  Google Scholar 

  50. Karn T, Denkert C, Weber KE et al (2020) Tumor mutational burden and immune infiltration as independent predictors of response to neoadjuvant immune checkpoint inhibition in early TNBC in GeparNuevo. Ann Oncol 31:1216–1222. https://doi.org/10.1016/j.annonc.2020.05.015

    Article  CAS  PubMed  Google Scholar 

  51. Barroso-Sousa R, Trippa L, Lange P et al (2019) Nimbus: a phase II study of nivolumab plus ipilimumab in metastatic hypermutated HER2-negative breast cancer. J Clin Oncol 37:TPS1115–TPS1115. https://doi.org/10.1200/JCO.2019.37.15_SUPPL.TPS1115

    Article  Google Scholar 

  52. McGrail DJ, Pilié PG, Rashid NU et al (2021) High tumor mutation burden fails to predict immune checkpoint blockade response across all cancer types. Ann Oncol 32:661–672. https://doi.org/10.1016/j.annonc.2021.02.006

    Article  CAS  PubMed  Google Scholar 

  53. Jiricny J (2006) (2006) The multifaceted mismatch-repair system. Nat Rev Mol Cell Biol 75(7):335–346. https://doi.org/10.1038/NRM1907

    Article  Google Scholar 

  54. Bonneville R, Krook MA, Kautto EA et al (2017) Landscape of microsatellite instability across 39 cancer types. JCO Precis Oncol. https://doi.org/10.1200/po.17.00073

    Article  PubMed  PubMed Central  Google Scholar 

  55. Vieira MLC, Santini L, Diniz AL, de Munhoz CF (2016) Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol 39:312. https://doi.org/10.1590/1678-4685-GMB-2016-0027

    Article  PubMed  PubMed Central  Google Scholar 

  56. Le DT, Uram JN, Wang H et al (2015) PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med 372:2509–2520. https://doi.org/10.1056/nejmoa1500596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Prasad V, Kaestner V, Mailankody S (2018) Cancer drugs approved based on biomarkers and not tumor type—FDA approval of pembrolizumab for mismatch repair-deficient solid cancers. JAMA Oncol 4:157–158. https://doi.org/10.1001/JAMAONCOL.2017.4182

    Article  PubMed  Google Scholar 

  58. Andre T, Berton D, Curigliano G et al (2021) Safety and efficacy of anti–PD-1 antibody dostarlimab in patients (pts) with mismatch repair-deficient (dMMR) solid cancers: Results from GARNET study. J Clin Oncol 39:9–9. https://doi.org/10.1200/JCO.2021.39.3_SUPPL.9

    Article  Google Scholar 

  59. Cheng AS, Leung SCY, Gao D et al (2020) Mismatch repair protein loss in breast cancer: clinicopathological associations in a large British Columbia cohort. Breast Cancer Res Treat 179:3–10. https://doi.org/10.1007/s10549-019-05438-y

    Article  CAS  PubMed  Google Scholar 

  60. Haricharan S, Bainbridge MN, Scheet P, Brown PH (2014) Somatic mutation load of estrogen receptor-positive breast tumors predicts overall survival: an analysis of genome sequence data. Breast Cancer Res Treat 146:211–220. https://doi.org/10.1007/s10549-014-2991-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Kok M, Horlings HM, Snaebjornsson P et al (2017) Profound immunotherapy response in mismatch repair-deficient breast cancer. JCO Precis Oncol. https://doi.org/10.1200/po.17.00052

    Article  PubMed  Google Scholar 

  62. Fremd C, Hlevnjak M, Zapatka M et al (2019) Mismatch repair deficiency drives durable complete remission by targeting programmed death receptor 1 in a metastatic luminal breast cancer patient. Breast Care 14:53–59. https://doi.org/10.1159/000492580

    Article  PubMed  Google Scholar 

  63. Li A, Goodyear S, Fuss C, Mitri Z (2021) Exceptional response to pembrolizumab and trastuzumab in a heavily pretreated patient with HER2-positive TMB-H and MSI-H metastatic breast cancer. JCO Precis Oncol 5:904–909. https://doi.org/10.1200/PO.20.00361

    Article  PubMed  Google Scholar 

  64. Wang S, Jia M, He Z, Liu XS (2018) APOBEC3B and APOBEC mutational signature as potential predictive markers for immunotherapy response in non-small cell lung cancer. Oncogene 37:3924–3936. https://doi.org/10.1038/s41388-018-0245-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Roberts SA, Lawrence MS, Klimczak LJ et al (2013) An APOBEC cytidine deaminase mutagenesis pattern is widespread in human cancers. Nat Genet 45:970–976. https://doi.org/10.1038/ng.2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Lefebvre C, Bachelot T, Filleron T et al (2016) Mutational profile of metastatic breast cancers: a retrospective analysis. PLOS Med 13:e1002201. https://doi.org/10.1371/journal.pmed.1002201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chumsri S, Sokol ES, Soyano-Muller AE et al (2020) Durable complete response with immune checkpoint inhibitor in breast cancer with high tumor mutational burden and APOBEC signature. JNCCN J Natl Compr Cancer Netw 18:517–521. https://doi.org/10.6004/jnccn.2020.7543

    Article  CAS  Google Scholar 

  68. Dimarco AV, Qin X, Van Alsten S et al (2021) APOBEC mutagenesis inhibits breast cancer growth through induction of a T cell-mediated antitumor immune response. bioRxiv. https://doi.org/10.1101/2021.02.13.431068

    Article  Google Scholar 

  69. Bertucci F, Ng CKY, Patsouris A et al (2019) Genomic characterization of metastatic breast cancers. Nature 569:560–564. https://doi.org/10.1038/s41586-019-1056-z

    Article  CAS  PubMed  Google Scholar 

  70. Mao Y, Lv M, Zhang Y et al (2020) APOBEC3B expression and its prognostic potential in breast cancer. Oncol Lett 19:3205–3214. https://doi.org/10.3892/ol.2020.11433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Kanu N, Cerone MA, Goh G et al (2016) DNA replication stress mediates APOBEC3 family mutagenesis in breast cancer. Genome Biol. https://doi.org/10.1186/s13059-016-1042-9

    Article  PubMed  PubMed Central  Google Scholar 

  72. Huang RSP, Haberberger J, Severson E et al (2020) A pan-cancer analysis of PD-L1 immunohistochemistry and gene amplification, tumor mutation burden and microsatellite instability in 48,782 cases. Mod Pathol 342(34):252–263. https://doi.org/10.1038/s41379-020-00664-y

    Article  CAS  Google Scholar 

  73. Goodman AM, Piccioni D, Kato S et al (2018) Prevalence of PDL1 amplification and preliminary response to immune checkpoint blockade in solid tumors. JAMA Oncol 4:1237–1244. https://doi.org/10.1001/JAMAONCOL.2018.1701

    Article  PubMed  PubMed Central  Google Scholar 

  74. Gupta S, Vanderbilt CM, Cotzia P et al (2019) Next-generation sequencing-based assessment of JAK2, PD-L1, and PD-L2 copy number alterations at 9p24.1 in breast cancer: potential implications for clinical management. J Mol Diagn 21:307–317. https://doi.org/10.1016/J.JMOLDX.2018.10.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Bachelot T, Filleron T, Dalenc F et al (2020) 128O PDL1/CD274 gain/amplification as a predictive marker of checkpoint blockade inhibitor efficacy in metastatic breast cancer: Exploratory analysis of the SAFIR02-IMMUNO randomized phase II trial. Ann Oncol 31:S58–S59. https://doi.org/10.1016/J.ANNONC.2020.03.231

    Article  Google Scholar 

  76. Rayner E, van Gool IC, Palles C et al (2016) A panoply of errors: polymerase proofreading domain mutations in cancer. Nat Rev Cancer 162(16):71–81. https://doi.org/10.1038/nrc.2015.12

    Article  CAS  Google Scholar 

  77. Wang F, Zhao Q, Wang Y-N et al (2019) Evaluation of POLE and POLD1 mutations as biomarkers for immunotherapy outcomes across multiple cancer types. JAMA Oncol 5:1504–1506. https://doi.org/10.1001/JAMAONCOL.2019.2963

    Article  PubMed  PubMed Central  Google Scholar 

  78. Mittica G, Ghisoni E, Giannone G et al (2017) Checkpoint inhibitors in endometrial cancer: preclinical rationale and clinical activity. Oncotarget 8:90532–90544. https://doi.org/10.18632/ONCOTARGET.20042

    Article  PubMed  PubMed Central  Google Scholar 

  79. Voutsadakis IA (2019) High tumor mutation burden and other immunotherapy response predictors in breast cancers: associations and therapeutic opportunities. Target Oncol 151(15):127–138. https://doi.org/10.1007/S11523-019-00689-7

    Article  Google Scholar 

  80. Ayers M, Lunceford J, Nebozhyn M et al (2017) IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest 127:2930–2940. https://doi.org/10.1172/JCI91190

    Article  PubMed  PubMed Central  Google Scholar 

  81. Damotte D, Warren S, Arrondeau J et al (2019) The tumor inflammation signature (TIS) is associated with anti-PD-1 treatment benefit in the CERTIM pan-cancer cohort. J Transl Med 17:357. https://doi.org/10.1186/s12967-019-2100-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Danaher P, Warren S, Lu R et al (2018) Pan-cancer adaptive immune resistance as defined by the tumor inflammation signature (TIS): results from the cancer genome atlas (TCGA). J Immunother Cancer. https://doi.org/10.1186/s40425-018-0367-1

    Article  PubMed  PubMed Central  Google Scholar 

  83. Ciruelos E, Pascual T, Chic N, et al (2021) Abstract OT-13-04: Solti-1716. Targeting non-luminal disease by PAM50 with pembrolizumab + paclitaxel in hormone receptor-positive/HER2-negative advanced/metastatic breast cancer patients who have progressed on or after CDK 4/6 inhibitor treatment (TATEN). In: Cancer Research. American Association for Cancer Research (AACR), p OT-13-04-OT-13-04

  84. Brasó-Maristany F, Paré L, Chic N et al (2021) Gene expression profiles of breast cancer metastasis according to organ site. Mol Oncol 1878–0261:13021. https://doi.org/10.1002/1878-0261.13021

    Article  CAS  Google Scholar 

  85. Cristescu R, Mogg R, Ayers M et al (2018) Pan-tumor genomic biomarkers for PD-1 checkpoint blockade–based immunotherapy. Science 362:3593. https://doi.org/10.1126/SCIENCE.AAR3593

    Article  Google Scholar 

  86. Paré L, Pascual T, Seguí E et al (2018) Association between PD1 mRNA and response to anti-PD1 monotherapy across multiple cancer types. Ann Oncol 29:2121–2128. https://doi.org/10.1093/annonc/mdy335

    Article  PubMed  Google Scholar 

  87. Emens LA, Goldstein LD, Schmid P et al (2021) The tumor microenvironment (TME) and atezolizumab + nab-paclitaxel (A+nP) activity in metastatic triple-negative breast cancer (mTNBC): IMpassion130. J Clin Oncol 39:1006–1006. https://doi.org/10.1200/JCO.2021.39.15_SUPPL.1006

    Article  Google Scholar 

  88. Burstein MD, Tsimelzon A, Poage GM et al (2015) Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. Clin Cancer Res 21:1688. https://doi.org/10.1158/1078-0432.CCR-14-0432

    Article  CAS  PubMed  Google Scholar 

  89. Bianchini G, Dugo M, Huang C-S et al (2021) LBA12 predictive value of gene-expression profiles (GEPs) and their dynamics during therapy in the NeoTRIPaPDL1 trial. Ann Oncol 32:S1283–S1284. https://doi.org/10.1016/J.ANNONC.2021.08.2084

    Article  Google Scholar 

  90. Dieci MV, Griguolo G, Bisagni G et al (2021) 129P Integration of gene expression and tumor-infiltrating lymphocytes (TILs) to predict pCR after neoadjuvant chemotherapy and nivolumab for patients with luminal B-like breast cancer in the phase II GIADA trial. Ann Oncol 32:S414. https://doi.org/10.1016/J.ANNONC.2021.08.410

    Article  Google Scholar 

  91. Wan JCM, Massie C, Garcia-Corbacho J et al (2017) Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer 17:223–238. https://doi.org/10.1038/nrc.2017.7

    Article  CAS  PubMed  Google Scholar 

  92. Cabel L, Proudhon C, Romano E et al (2018) Clinical potential of circulating tumour DNA in patients receiving anticancer immunotherapy. Nat Rev Clin Oncol 1510(15):639–650. https://doi.org/10.1038/S41571-018-0074-3

    Article  Google Scholar 

  93. Lee JH, Long GV, Boyd S et al (2017) Circulating tumour DNA predicts response to anti-PD1 antibodies in metastatic melanoma. Ann Oncol 28:1130–1136. https://doi.org/10.1093/annonc/mdx026

    Article  CAS  PubMed  Google Scholar 

  94. Powles T, Assaf ZJ, Davarpanah N et al (2021) ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature 5957867(595):432–437. https://doi.org/10.1038/S41586-021-03642-9

    Article  Google Scholar 

  95. Georgiadis A, Durham JN, Keefer LA et al (2019) Noninvasive detection of microsatellite instability and high tumor mutation burden in cancer patients treated with PD-1 blockade. Clin Cancer Res 25:7024–7034. https://doi.org/10.1158/1078-0432.CCR-19-1372

    Article  PubMed  PubMed Central  Google Scholar 

  96. Gandara DR, Kowanetz M, Mok TSK, et al (2017) Blood-based biomarkers for cancer immunotherapy: tumor mutational burden in blood (bTMB) is associated with improved atezolizumab (atezo) efficacy in 2L1 NSCLC (POPLAR and OAK). Abstr B 42nd ESMO Congr (ESMO 2017) 8–12 Sept 2017, Madrid, Spain 28:v460. https://doi.org/10.1093/annonc/mdx380

  97. Rizvi NA, Cho BC, Reinmuth N et al (2020) Durvalumab with or without tremelimumab vs standard chemotherapy in first-line treatment of metastatic non-small cell lung cancer: the MYSTIC phase 3 randomized clinical trial. JAMA Oncol 6:661–674. https://doi.org/10.1001/jamaoncol.2020.0237

    Article  PubMed  PubMed Central  Google Scholar 

  98. Bratman SV, Yang SYC, Iafolla MAJ et al (2020) Personalized circulating tumor DNA analysis as a predictive biomarker in solid tumor patients treated with pembrolizumab. Nat Cancer 1:873–881. https://doi.org/10.1038/s43018-020-0096-5

    Article  PubMed  Google Scholar 

  99. Zhang Q, Luo J, Wu S et al (2020) Prognostic and predictive impact of circulating tumor DNA in patients with advanced cancers treated with immune checkpoint blockade. Cancer Discov. https://doi.org/10.1158/2159-8290.cd-20-0047

    Article  PubMed  PubMed Central  Google Scholar 

  100. Hieken T, ChenJ HT et al (2016) The microbiome of aseptically collected human breast tissue in benign and malignant disease. Sci Rep. https://doi.org/10.1038/SREP30751

    Article  PubMed  PubMed Central  Google Scholar 

  101. Wang H, Altemus J, Niazi F et al (2017) Breast tissue, oral and urinary microbiomes in breast cancer. Oncotarget 8:88122–88138. https://doi.org/10.18632/ONCOTARGET.21490

    Article  PubMed  PubMed Central  Google Scholar 

  102. Xuan C, Shamonki J, Chung A et al (2014) Microbial dysbiosis is associated with human breast cancer. PLoS ONE. https://doi.org/10.1371/JOURNAL.PONE.0083744

    Article  PubMed  PubMed Central  Google Scholar 

  103. Gopalakrishnan V, Spencer CN, Nezi L et al (2018) Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359:97–103. https://doi.org/10.1126/SCIENCE.AAN4236

    Article  CAS  PubMed  Google Scholar 

  104. Sivan A, Corrales L, Hubert N et al (2015) Commensal bifidobacterium promotes antitumor immunity and facilitates anti–PD-L1 efficacy. Science 350:1084. https://doi.org/10.1126/SCIENCE.AAC4255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Blank CU, Haanen JB, Ribas A, Schumacher TN (2016) The “cancer immunogram.” Science 352:658–660. https://doi.org/10.1126/SCIENCE.AAF2834

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study has received funding from Generalitat de Catalunya Peris PhD4MD 2019 SLT008/18/00122 (to N.C.), Fundación Científica Asociación Española Contra el Cáncer AECC_Postdoctoral17-1062 (to F.B-M.).

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleix Prat.

Ethics declarations

Conflict of interest

A.P. reports advisory and consulting fees from Roche, Pfizer, Novartis, Amgen, BMS, Puma, Oncolytics Biotech, MSD, Guardant Health, Peptomyc and Lilly, lecture fees from Roche, Pfizer, Novartis, Amgen, BMS, Nanostring Technologies and Daiichi Sankyo, institutional financial interests from Boehringer, Novartis, Roche, Nanostring, Sysmex Europa GmbH, Medica Scientia inno. Research, SL, Celgene, Astellas and Pfizer; a leadership role in Reveal Genomics, SL; and a patent PCT/EP2016/080056.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chic, N., Brasó-Maristany, F. & Prat, A. Biomarkers of immunotherapy response in breast cancer beyond PD-L1. Breast Cancer Res Treat 191, 39–49 (2022). https://doi.org/10.1007/s10549-021-06421-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-021-06421-2

Keywords

Navigation