Skip to main content

Advertisement

Log in

Targeting HIF1-alpha/miR-326/ITGA5 axis potentiates chemotherapy response in triple-negative breast cancer

  • Preclinical study
  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Abstract

Purpose

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer that is frequently treated with chemotherapy. However, many patients exhibit either de novo chemoresistance or ultimately develop resistance to chemotherapy, leading to significantly high mortality rates. Therefore, increasing the efficacy of chemotherapy has potential to improve patient outcomes.

Methods

Here, we performed whole transcriptome sequencing (both RNA and small RNA-sequencing), coupled with network simulations and patient survival data analyses to build a novel miRNA-mRNA interaction network governing chemoresistance in TNBC. We performed cell proliferation assay, Western blotting, RNAi/miRNA mimic experiments, FN coating, 3D cultures, and ChIP assays to validate the interactions in the network, and their functional roles in chemoresistance. We developed xenograft models to test the therapeutic potential of the identified key miRNA/proteins in potentiating chemoresponse in vivo. We also analyzed several patient datasets to evaluate the clinical relevance of our findings.

Results

We identified fibronectin (FN1) as a central chemoresistance driver gene. Overexpressing miR-326 reversed FN1-driven chemoresistance by targeting FN1 receptor, ITGA5. miR-326 was downregulated by increased hypoxia/HIF1A and ECM stiffness in chemoresistant tumors, leading to upregulation of ITGA5 and activation of the downstream FAK/Src signaling pathways. Overexpression of miR-326 or inhibition of ITGA5 overcame FN1-driven chemotherapy resistance in vitro by inhibiting FAK/Src pathway and potentiated the efficacy of chemotherapy in vivo. Importantly, lower expression of miR-326 or higher levels of predicted miR-326 target genes was significantly associated with worse overall survival in chemotherapy-treated TNBC patients.

Conclusion

FN1 is central in chemoresistance. In chemoresistant tumors, hypoxia and resulting ECM stiffness repress the expression of the tumor suppressor miRNA, miR-326. Hence, re-expression of miR-326 or inhibition of its target ITGA5 reverses FN1-driven chemoresistance making them attractive therapeutic approaches to enhance chemotherapy response in TNBCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Raw RNA-seq data analyzed in the current study have been made available on NCBI Sequence Read Archive with accession PRJNA607780. The small RNA-Seq data have also been deposited to the SRA with the submission ID: PRJNA806717.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A (2018) Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 68:394–424. https://doi.org/10.3322/caac.21492

    Article  PubMed  Google Scholar 

  2. Hwang SY, Park S, Kwon Y (2019) Recent therapeutic trends and promising targets in triple negative breast cancer. Pharmacol Ther 199:30–57. https://doi.org/10.1016/j.pharmthera.2019.02.006

    Article  CAS  PubMed  Google Scholar 

  3. Boyle P (2012) Triple-negative breast cancer: epidemiological considerations and recommendations. Ann Oncol 23(6):7–12. https://doi.org/10.1093/annonc/mds187

    Article  Google Scholar 

  4. Bianchini G, Balko JM, Mayer IA, Sanders ME, Gianni L (2016) Triple-negative breast cancer: challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol 13:674–690. https://doi.org/10.1038/nrclinonc.2016.66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Santonja A, Sanchez-Munoz A, Lluch A, Chica-Parrado MR, Albanell J, Chacon JI et al (2018) Triple negative breast cancer subtypes and pathologic complete response rate to neoadjuvant chemotherapy. Oncotarget 9:26406–26416. https://doi.org/10.18632/oncotarget.25413

    Article  PubMed  PubMed Central  Google Scholar 

  6. Carey LA, Dees EC, Sawyer L, Gatti L, Moore DT, Collichio F et al (2007) The triple negative paradox: primary tumor chemosensitivity of breast cancer subtypes. Clin Cancer Res 13:2329–2334. https://doi.org/10.1158/1078-0432.CCR-06-1109

    Article  CAS  PubMed  Google Scholar 

  7. Gass P, Lux MP, Rauh C, Hein A, Bani MR, Fiessler C et al (2018) Prediction of pathological complete response and prognosis in patients with neoadjuvant treatment for triple-negative breast cancer. BMC Cancer 18:1051. https://doi.org/10.1186/s12885-018-4925-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lebert JM, Lester R, Powell E, Seal M, McCarthy J (2018) Advances in the systemic treatment of triple-negative breast cancer. Curr Oncol 25:S142–S150. https://doi.org/10.3747/co.25.3954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liedtke C, Mazouni C, Hess KR, Andre F, Tordai A, Mejia JA et al (2008) Response to neoadjuvant therapy and long-term survival in patients with triple-negative breast cancer. J Clin Oncol 26:1275–1281. https://doi.org/10.1200/JCO.2007.14.4147

    Article  PubMed  Google Scholar 

  10. Schmid P, Adams S, Rugo HS, Schneeweiss A, Barrios CH, Iwata H et al (2018) Atezolizumab and nab-paclitaxel in advanced triple-negative breast cancer. N Engl J Med 379:2108–2121. https://doi.org/10.1056/NEJMoa1809615

    Article  CAS  PubMed  Google Scholar 

  11. Keenan TE, Tolaney SM (2020) Role of immunotherapy in triple-negative breast cancer. J Natl Compr Canc Netw 18:479–489. https://doi.org/10.6004/jnccn.2020.7554

    Article  CAS  PubMed  Google Scholar 

  12. Bardia A, Mayer IA, Vahdat LT, Tolaney SM, Isakoff SJ, Diamond JR et al (2019) Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med 380:741–751. https://doi.org/10.1056/NEJMoa1814213

    Article  CAS  PubMed  Google Scholar 

  13. Egeblad M, Nakasone ES, Werb Z (2010) Tumors as organs: complex tissues that interface with the entire organism. Dev Cell 18:884–901. https://doi.org/10.1016/j.devcel.2010.05.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Henke E, Nandigama R, Ergun S (2019) Extracellular matrix in the tumor microenvironment and its impact on cancer therapy. Front Mol Biosci 6:160. https://doi.org/10.3389/fmolb.2019.00160

    Article  CAS  PubMed  Google Scholar 

  15. Saatci O, Kaymak A, Raza U, Ersan PG, Akbulut O, Banister CE et al (2020) Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer. Nat Commun 11:2416. https://doi.org/10.1038/s41467-020-16199-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Berrazouane S, Boisvert M, Salti S, Mourad W, Al-Daccak R, Barabe F et al (2019) Beta1 integrin blockade overcomes doxorubicin resistance in human T-cell acute lymphoblastic leukemia. Cell Death Dis 10:357. https://doi.org/10.1038/s41419-019-1593-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Cooper J, Giancotti FG (2019) Integrin signaling in cancer: mechanotransduction, stemness, epithelial plasticity, and therapeutic resistance. Cancer Cell 35:347–367. https://doi.org/10.1016/j.ccell.2019.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lovitt CJ, Shelper TB, Avery VM (2018) Doxorubicin resistance in breast cancer cells is mediated by extracellular matrix proteins. BMC Cancer 18:41. https://doi.org/10.1186/s12885-017-3953-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu H, Wang G, Zhu H, Xu A (2021) ITGA5 is a prognostic biomarker and correlated with immune infiltration in gastrointestinal tumors. BMC Cancer 21:269. https://doi.org/10.1186/s12885-021-07996-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Zhou C, Shen Y, Wei Z, Shen Z, Tang M, Shen Y et al (2022) ITGA5 is an independent prognostic biomarker and potential therapeutic target for laryngeal squamous cell carcinoma. J Clin Lab Anal. https://doi.org/10.1002/jcla.24228

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gilbert LA, Hemann MT (2011) Chemotherapeutic resistance: surviving stressful situations. Cancer Res 71:5062–5066. https://doi.org/10.1158/0008-5472.CAN-11-0277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Senthebane DA, Rowe A, Thomford NE, Shipanga H, Munro D, Mazeedi M et al (2017) The role of tumor microenvironment in chemoresistance: to survive, keep your enemies closer. Int J Mol Sci. https://doi.org/10.3390/ijms18071586

    Article  PubMed  PubMed Central  Google Scholar 

  23. Hwang D, Rust AG, Ramsey S, Smith JJ, Leslie DM, Weston AD et al (2005) A data integration methodology for systems biology. Proc Natl Acad Sci U S A 102:17296–17301. https://doi.org/10.1073/pnas.0508647102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Archer TC, Fertig EJ, Gosline SJ, Hafner M, Hughes SK, Joughin BA et al (2016) Systems approaches to cancer biology. Cancer Res 76:6774–6777. https://doi.org/10.1158/0008-5472.CAN-16-1580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nagy A, Lanczky A, Menyhart O, Gyorffy B (2018) Validation of miRNA prognostic power in hepatocellular carcinoma using expression data of independent datasets. Sci Rep 8:9227. https://doi.org/10.1038/s41598-018-27521-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Jezequel P, Loussouarn D, Guerin-Charbonnel C, Campion L, Vanier A, Gouraud W et al (2015) Gene-expression molecular subtyping of triple-negative breast cancer tumours: importance of immune response. Breast Cancer Res 17:43. https://doi.org/10.1186/s13058-015-0550-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhao XG, Hu JY, Tang J, Yi W, Zhang MY, Deng R et al (2019) miR-665 expression predicts poor survival and promotes tumor metastasis by targeting NR4A3 in breast cancer. Cell Death Dis 10:479. https://doi.org/10.1038/s41419-019-1705-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Enerly E, Steinfeld I, Kleivi K, Leivonen SK, Aure MR, Russnes HG et al (2011) miRNA-mRNA integrated analysis reveals roles for miRNAs in primary breast tumors. PLoS ONE 6:e16915. https://doi.org/10.1371/journal.pone.0016915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. de Rinaldis E, Gazinska P, Mera A, Modrusan Z, Fedorowicz GM, Burford B et al (2013) Integrated genomic analysis of triple-negative breast cancers reveals novel microRNAs associated with clinical and molecular phenotypes and sheds light on the pathways they control. BMC Genomics 14:643. https://doi.org/10.1186/1471-2164-14-643

    Article  PubMed  PubMed Central  Google Scholar 

  30. Agarwal V, Bell GW, Nam JW, Bartel DP (2015) Predicting effective microRNA target sites in mammalian mRNAs. Elife. https://doi.org/10.7554/eLife.05005

    Article  PubMed  PubMed Central  Google Scholar 

  31. Szot CS, Buchanan CF, Freeman JW, Rylander MN (2011) 3D in vitro bioengineered tumors based on collagen I hydrogels. Biomaterials 32:7905–7912. https://doi.org/10.1016/j.biomaterials.2011.07.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Motte S, Kaufman LJ (2013) Strain stiffening in collagen I networks. Biopolymers 99:35–46. https://doi.org/10.1002/bip.22133

    Article  CAS  PubMed  Google Scholar 

  33. Anguiano M, Castilla C, Maska M, Ederra C, Pelaez R, Morales X et al (2017) Characterization of three-dimensional cancer cell migration in mixed collagen-Matrigel scaffolds using microfluidics and image analysis. PLoS ONE 12:e0171417. https://doi.org/10.1371/journal.pone.0171417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Kimura H, Weisz A, Ogura T, Hitomi Y, Kurashima Y, Hashimoto K et al (2001) Identification of hypoxia-inducible factor 1 ancillary sequence and its function in vascular endothelial growth factor gene induction by hypoxia and nitric oxide. J Biol Chem 276:2292–2298. https://doi.org/10.1074/jbc.M008398200

    Article  CAS  PubMed  Google Scholar 

  35. Rashid I, Pathak AK, Kumar R, Srivastava P, Singh M, Murali S et al (2019) Genome-wide comparative analysis of HIF binding sites in cyprinus carpio for in silico identification of functional hypoxia response elements. Front Genet 10:659. https://doi.org/10.3389/fgene.2019.00659

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Singh P, Carraher C, Schwarzbauer JE (2010) Assembly of fibronectin extracellular matrix. Annu Rev Cell Dev Biol 26:397–419. https://doi.org/10.1146/annurev-cellbio-100109-104020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hamidi H, Pietila M, Ivaska J (2016) The complexity of integrins in cancer and new scopes for therapeutic targeting. Br J Cancer 115:1017–1023. https://doi.org/10.1038/bjc.2016.312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ju JA, Godet I, Ye IC, Byun J, Jayatilaka H, Lee SJ et al (2017) Hypoxia selectively enhances integrin alpha5beta1 receptor expression in breast cancer to promote metastasis. Mol Cancer Res 15:723–734. https://doi.org/10.1158/1541-7786.MCR-16-0338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Schaffner F, Ray AM, Dontenwill M (2013) Integrin alpha5beta1, the fibronectin receptor, as a pertinent therapeutic target in solid tumors. Cancers 5:27–47. https://doi.org/10.3390/cancers5010027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Morozevich GE, Kozlova NI, Susova OY, Lupatov AY, Berman AE (2017) Hyperexpression of Integrin alpha5beta1 Promotes Resistance of MCF-7 Human Breast Carcinoma Cells to Doxorubicin via ERK Protein Kinase Down-regulation. Biochemistry (Mosc) 82:1017–1024. https://doi.org/10.1134/S0006297917090048

    Article  CAS  Google Scholar 

  41. Aota S, Nomizu M, Yamada KM (1994) The short amino acid sequence Pro-His-Ser-Arg-Asn in human fibronectin enhances cell-adhesive function. J Biol Chem 269:24756–24761

    Article  CAS  Google Scholar 

  42. Chavez KJ, Garimella SV, Lipkowitz S (2010) Triple negative breast cancer cell lines: one tool in the search for better treatment of triple negative breast cancer. Breast Dis 32:35–48. https://doi.org/10.3233/BD-2010-0307

    Article  PubMed  PubMed Central  Google Scholar 

  43. Holliday DL, Speirs V (2011) Choosing the right cell line for breast cancer research. Breast Cancer Res 13:215. https://doi.org/10.1186/bcr2889

    Article  PubMed  PubMed Central  Google Scholar 

  44. Lucero HA, Kagan HM (2006) Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol Life Sci 63:2304–2316. https://doi.org/10.1007/s00018-006-6149-9

    Article  CAS  PubMed  Google Scholar 

  45. Ghaemi Z, Soltani BM, Mowla SJ (2019) MicroRNA-326 functions as a tumor suppressor in breast cancer by targeting ErbB/PI3K signaling pathway. Front Oncol 9:653. https://doi.org/10.3389/fonc.2019.00653

    Article  PubMed  PubMed Central  Google Scholar 

  46. Hu S, Ran Y, Chen W, Zhang Y, Xu Y (2017) MicroRNA-326 inhibits cell proliferation and invasion, activating apoptosis in hepatocellular carcinoma by directly targeting LIM and SH3 protein 1. Oncol Rep 38:1569–1578. https://doi.org/10.3892/or.2017.5810

    Article  CAS  PubMed  Google Scholar 

  47. Hong BS, Ryu HS, Kim N, Kim J, Lee E, Moon H et al (2019) Tumor suppressor miRNA-204-5p regulates growth, metastasis, and immune microenvironment remodeling in breast cancer. Cancer Res 79:1520–1534. https://doi.org/10.1158/0008-5472.CAN-18-0891

    Article  CAS  PubMed  Google Scholar 

  48. Rupaimoole R, Calin GA, Lopez-Berestein G, Sood AK (2016) miRNA deregulation in cancer cells and the tumor microenvironment. Cancer Discov 6:235–246. https://doi.org/10.1158/2159-8290.CD-15-0893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Zhang P, Kong F, Deng X, Yu Y, Hou C, Liang T et al (2017) MicroRNA-326 suppresses the proliferation, migration and invasion of cervical cancer cells by targeting ELK1. Oncol Lett 13:2949–2956. https://doi.org/10.3892/ol.2017.5852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sun C, Huang C, Li S, Yang C, Xi Y, Wang L et al (2016) Hsa-miR-326 targets CCND1 and inhibits non-small cell lung cancer development. Oncotarget 7:8341–8359. https://doi.org/10.18632/oncotarget.7071

    Article  PubMed  PubMed Central  Google Scholar 

  51. Nawaz Z, Patil V, Paul Y, Hegde AS, Arivazhagan A, Santosh V et al (2016) PI3 kinase pathway regulated miRNome in glioblastoma: identification of miR-326 as a tumour suppressor miRNA. Mol Cancer 15:74. https://doi.org/10.1186/s12943-016-0557-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Liang Z, Wu H, Xia J, Li Y, Zhang Y, Huang K et al (2010) Involvement of miR-326 in chemotherapy resistance of breast cancer through modulating expression of multidrug resistance-associated protein 1. Biochem Pharmacol 79:817–824. https://doi.org/10.1016/j.bcp.2009.10.017

    Article  CAS  PubMed  Google Scholar 

  53. Hockel M, Vaupel P (2001) Tumor hypoxia: definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 93:266–276. https://doi.org/10.1093/jnci/93.4.266

    Article  CAS  PubMed  Google Scholar 

  54. Rohwer N, Cramer T (2011) Hypoxia-mediated drug resistance: novel insights on the functional interaction of HIFs and cell death pathways. Drug Resist Updat 14:191–201. https://doi.org/10.1016/j.drup.2011.03.001

    Article  CAS  PubMed  Google Scholar 

  55. Bertout JA, Patel SA, Simon MC (2008) The impact of O2 availability on human cancer. Nat Rev Cancer 8:967–975. https://doi.org/10.1038/nrc2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Krishnamachary B, Berg-Dixon S, Kelly B, Agani F, Feldser D, Ferreira G et al (2003) Regulation of colon carcinoma cell invasion by hypoxia-inducible factor 1. Cancer Res 63:1138–1143

    CAS  PubMed  Google Scholar 

  57. Song X, Liu X, Chi W, Liu Y, Wei L, Wang X et al (2006) Hypoxia-induced resistance to cisplatin and doxorubicin in non-small cell lung cancer is inhibited by silencing of HIF-1alpha gene. Cancer Chemother Pharmacol 58:776–784. https://doi.org/10.1007/s00280-006-0224-7

    Article  CAS  PubMed  Google Scholar 

  58. Botla SK, Gholami AM, Malekpour M, Moskalev EA, Fallah M, Jandaghi P et al (2012) Diagnostic values of GHSR DNA methylation pattern in breast cancer. Breast Cancer Res Treat 135:705–713. https://doi.org/10.1007/s10549-012-2197-z

    Article  CAS  PubMed  Google Scholar 

  59. Mishra RR, Belder N, Ansari SA, Kayhan M, Bal H, Raza U et al (2018) Reactivation of cAMP pathway by PDE4D inhibition represents a novel druggable axis for overcoming tamoxifen resistance in ER-positive breast cancer. Clin Cancer Res 24:1987–2001. https://doi.org/10.1158/1078-0432.CCR-17-2776

    Article  CAS  PubMed  Google Scholar 

  60. Saatci O, Borgoni S, Akbulut O, Durmus S, Raza U, Eyupoglu E et al (2018) Targeting PLK1 overcomes T-DM1 resistance via CDK1-dependent phosphorylation and inactivation of Bcl-2/xL in HER2-positive breast cancer. Oncogene 37:2251–2269. https://doi.org/10.1038/s41388-017-0108-9

    Article  CAS  PubMed  Google Scholar 

  61. Raza U, Saatci O, Uhlmann S, Ansari SA, Eyupoglu E, Yurdusev E et al (2016) The miR-644a/CTBP1/p53 axis suppresses drug resistance by simultaneous inhibition of cell survival and epithelial-mesenchymal transition in breast cancer. Oncotarget 7:49859–49877. https://doi.org/10.18632/oncotarget.10489

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gyorffy B, Lanczky A, Eklund AC, Denkert C, Budczies J, Li Q et al (2010) An online survival analysis tool to rapidly assess the effect of 22,277 genes on breast cancer prognosis using microarray data of 1,809 patients. Breast Cancer Res Treat 123:725–731. https://doi.org/10.1007/s10549-009-0674-9

    Article  CAS  PubMed  Google Scholar 

  63. Dweep H, Gretz N (2015) miRWalk20: a comprehensive atlas of microRNA-target interactions. Nat Methods 12:697. https://doi.org/10.1038/nmeth.3485

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to the members of the Ozgur Sahin laboratory for invaluable discussion and advice. We thank Jitao David Zhang for his help with RNA-sequencing data.

Funding

This work was supported by European Commission FP7 Marie Curie Career Integration Grant PCIG14-GA-2013-631149 (OS), the American Cancer Society Institutional Research Grant IRG-17-179-04 (OS), NIH Research Project Grants R01-CA267101 (OS) and 2P20GM109091-06 (OS), the scholarship from Higher Education Commission of Pakistan (UR), the scholarship from 2211/A TÜBİTAK Domestic PhD Scholarship Program (UMT), and Susan G. Komen Interdisciplinary Graduate Training to Eliminate Cancer Disparities (IGniTE-CD) GTDR17500160 (OzgeS). YR is a research scholar of Fonds de recherche du Québec—Santé (FRQS).

Author information

Authors and Affiliations

Authors

Contributions

OS supervised the study. OS and UR conceptualized the study. RA, UMT, IOT, OzgeS, PG, and UR designed and performed the experiments, data acquisition, and data analysis. RA, UMT, IOT, OzgeS, and OS contributed to writing, review, and/or revision of the manuscript. HO and TC helped building the miRNA–mRNA network. YR oversaw RNA-seq and small RNA-seq experiments. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ozgur Sahin.

Ethics declarations

Conflict of interest

O.S. is the co-founder and manager of OncoCube Therapeutics LLC and founder and president of LoxiGen, Inc. The other authors declare no potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 859 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Assidicky, R., Tokat, U.M., Tarman, I.O. et al. Targeting HIF1-alpha/miR-326/ITGA5 axis potentiates chemotherapy response in triple-negative breast cancer. Breast Cancer Res Treat 193, 331–348 (2022). https://doi.org/10.1007/s10549-022-06569-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10549-022-06569-5

Keywords

Navigation