Skip to main content

Advertisement

Log in

Plasma phospholipids fatty acids, dietary fatty acids, and breast cancer risk

  • Original paper
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

This study prospectively investigates associations between fatty acids assessed in plasma phospholipids (PPL) and diet, and breast cancer risk, including subgroups defined by hormone receptor status.

Methods

We performed a case-cohort analysis within the Melbourne Collaborative Cohort Study using a random sample of 2,021 women and 470 breast cancer cases. At baseline, fatty acids were assessed in PPL and estimated from diet using a 121-item food frequency questionnaire. Hazard ratios (HR) and 95 % confidence intervals (CI) were estimated using Cox regression.

Results

Breast cancer risk was positively associated with %PPL saturated fatty acids (SFA); HRQ5vsQ1 = 1.64 (95 % CI 1.17–2.30); p trend = 0.004. Positive associations were found for ER+ or PR+ tumors for %PPL SFA and palmitic acid and for ER−/PR− tumors for %PPL n-6 polyunsaturated fatty acid (PUFA), TFA, TFA 16:1, and TFA 18:1n-7 (all p homogeneity <0.05). Breast cancer risk was inversely associated with dietary docosapentaenoic acid (DPA); HRQ5vsQ1 = 0.57 (95 % CI 0.40–0.82); p trend = 0.001 [with similar inverse associations observed for dietary docosahexaenoic (DHA) and eicosapentaenoic acid (EPA)] and positively associated with dietary n-6:n-3 PUFA. Inverse associations for ER−/PR− tumors were found for dietary dihomo-γ-linolenic acid (DGLA) for older women (p homogeneity = 0.04).

Conclusions

Breast cancer risk was positively associated with %PPL SFA and the ratio of dietary n-6 to n-3 PUFA and inversely associated with dietary long-chain n-3 PUFA intake. Some associations between fatty acids and breast cancer varied by age and tumor phenotype defined by hormone receptor status. Increased intake of fish and other foods rich in long-chain n-3 PUFAs and reduced n-6 PUFA intake might reduce breast cancer risk.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. World Cancer Research Fund/American Institute for Cancer Research (2007) Food, nutrition, physical activity, and the prevention of cancer: a global perspective. AICR, Washington

    Google Scholar 

  2. Boyd NF, Stone J, Vogt KN, Connelly BS, Martin LJ, Minkin S (2003) Dietary fat and breast cancer risk revisited: a meta-analysis of the published literature. Br J Cancer 89:1672–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Saadatian-Elahi M, Norat T, Goudable J, Riboli E (2004) Biomarkers of dietary fatty acid intake and the risk of breast cancer: a meta-analysis. Int J Cancer 111:584–591

    Article  CAS  PubMed  Google Scholar 

  4. Sieri S, Chiodini P, Agnoli C, Pala V, Berrino F, Trichopoulou A et al (2014) Dietary fat intake and development of specific breast cancer subtypes. J Natl Cancer Inst. doi:10.1093/jnci/dju068

    PubMed Central  Google Scholar 

  5. Turner LB (2011) A meta-analysis of fat intake, reproduction, and breast cancer risk: an evolutionary perspective. Am J Hum Biol 23:601–608

    Article  PubMed  Google Scholar 

  6. Gerber M (2009) Background review paper on total fat, fatty acid intake and cancers. Ann Nutr Metab 55:140–161

    Article  CAS  PubMed  Google Scholar 

  7. Zock PL, Katan MB (1998) Linoleic acid intake and cancer risk: a review and meta-analysis. Am J Clin Nutr 68:142–153

    CAS  PubMed  Google Scholar 

  8. Zheng J-S, Hu X-J, Zhao Y-M, Yang J, Li D (2013) Intake of fish and marine n-3 polyunsaturated fatty acids and risk of breast cancer: meta-analysis of data from 21 independent prospective cohort studies. BMJ 346:f3706

    Article  PubMed  Google Scholar 

  9. Food and Agriculture Organization of the United Nations (2010) Fats and fatty acids in human nutrition: report of an expert consultation. FAO food and nutrition paper 91, Rome

  10. Liu J, Ma DW (2014) The role of n-3 polyunsaturated fatty acids in the prevention and treatment of breast cancer. Nutrients 6:5184–5223

    Article  PubMed  PubMed Central  Google Scholar 

  11. Park SY, Kolonel LN, Henderson BE, Wilkens LR (2012) Dietary fat and breast cancer in postmenopausal women according to ethnicity and hormone receptor status: the Multiethnic Cohort Study. Cancer Prev Res 5:216–228

    Article  CAS  Google Scholar 

  12. Thiébaut A, Chajès V, Gerber M, Boutron-Ruault MC, Joulin V, Lenoir G et al (2009) Dietary intakes of ω-6 and ω-3 polyunsaturated fatty acids and the risk of breast cancer. Int J Cancer 124:924–931

    Article  PubMed  Google Scholar 

  13. Fay MP, Freedman LS, Clifford CK, Midthune DN (1997) Effect of different types and amounts of fat on the development of mammary tumors in rodents: a review. Cancer Res 57:3979–3988

    CAS  PubMed  Google Scholar 

  14. Rose DP (1997) Dietary fatty acids and prevention of hormone-responsive cancer. Proc Soc Exp Biol Med 216:224–233

    Article  CAS  PubMed  Google Scholar 

  15. Larsson SC, Kumlin M, Ingelman-Sundberg M, Wolk A (2004) Dietary long-chain n-3 fatty acids for the prevention of cancer: a review of potential mechanisms. Am J Clin Nutr 79:935–945

    CAS  PubMed  Google Scholar 

  16. Terry PD, Terry JB, Rohan TE (2004) Long-chain (n-3) fatty acid intake and risk of cancers of the breast and the prostate: recent epidemiological studies, biological mechanisms, and directions for future research. J Nutr 134:3412S–3420S

    CAS  PubMed  Google Scholar 

  17. Arab L (2003) Biomarkers of fat and fatty acid intake. J Nutr 133(Suppl 3):925S–932S

    CAS  PubMed  Google Scholar 

  18. Escrich E, Moral R, Grau L, Costa I, Solanas M (2007) Molecular mechanisms of the effects of olive oil and other dietary lipids on cancer. Mol Nutr Food Res 51:1279–1292

    CAS  PubMed  Google Scholar 

  19. Kim EH, Willett WC, Colditz GA, Hankinson SE, Stampfer MJ, Hunter DJ et al (2006) Dietary fat and risk of postmenopausal breast cancer in a 20-year follow-up. Am J Epidemiol 164:990–997

    Article  PubMed  Google Scholar 

  20. Kushi LH, Potter JD, Bostick RM, Drinkard CR, Sellers TA, Gapstur SM et al (1995) Dietary fat and risk of breast cancer according to hormone receptor status. Cancer Epidemiol Biomarkers Prev 4:11–19

    CAS  PubMed  Google Scholar 

  21. Giles G, English D, Riboli E, Lambert R (2002) The Melbourne Collaborative Cohort Study. Nutrition and lifestyle: opportunities for cancer prevention. In: European conference on nutrition and cancer held in Lyon, France on 21–24 June 2003. International agency for research on cancer (IARC), pp 69–70

  22. Baglietto L, Severi G, English DR, Krishnan K, Hopper JL, McLean C et al (2010) Circulating steroid hormone levels and risk of breast cancer for postmenopausal women. Cancer Epidemiol Biomarkers Prev 19:492–502

    Article  CAS  PubMed  Google Scholar 

  23. Hodge AM, Simpson JA, Gibson RA, Sinclair AJ, Makrides M, O’Dea K et al (2007) Plasma phospholipid fatty acid composition as a biomarker of habitual dietary fat intake in an ethnically diverse cohort. Nutr Metab Cardiovasc Dis 17:415–426

    Article  CAS  PubMed  Google Scholar 

  24. RMIT Lipid Research Group (2001) Fatty acid compositional database. Xyris Software, Brisbane

    Google Scholar 

  25. Prentice RL (1986) A case-cohort design for epidemiologic cohort studies and disease prevention trials. Biometrika 73:1–11

    Article  Google Scholar 

  26. Singer JD, Willett JB (2003) Applied longitudinal data analysis: modeling change and event occurrence. Oxford University Press, New York

    Book  Google Scholar 

  27. Willett W, Stampfer MJ (1986) Total energy intake: implications for epidemiologic analyses. Am J Epidemiol 124:17–27

    CAS  PubMed  Google Scholar 

  28. Bingham SA, Luben R, Welch A, Wareham N, Khaw KT, Day N (2003) Are imprecise methods obscuring a relation between fat and breast cancer? Lancet 362:212–214

    Article  PubMed  Google Scholar 

  29. Hodge AM, English DR, O’Dea K, Sinclair AJ, Makrides M, Gibson RA et al (2007) Plasma phospholipid and dietary fatty acids as predictors of type 2 diabetes: interpreting the role of linoleic acid. Am J Clin Nutr 86:189–197

    CAS  PubMed  Google Scholar 

  30. Baro L, Hermoso JC, Nunez MC, Jimenez-Rios JA, Gil A (1998) Abnormalities in plasma and red blood cell fatty acid profiles of patients with colorectal cancer. Br J Cancer 77:1978–1983

    Article  CAS  PubMed  Google Scholar 

  31. Smith-Warner SA, Spiegelman D, Adami HO, Beeson WL, van den Brandt PA, Folsom AR et al (2001) Types of dietary fat and breast cancer: a pooled analysis of cohort studies. Int J Cancer 92:767–774

    Article  CAS  PubMed  Google Scholar 

  32. Sczaniecka AK, Brasky TM, Lampe JW, Patterson RE, White E (2012) Dietary intake of specific fatty acids and breast cancer risk among postmenopausal women in the VITAL cohort. Nutr Cancer 64:1131–1142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Dong J-Y, Zhang L, He K, Qin L-Q (2011) Dairy consumption and risk of breast cancer: a meta-analysis of prospective cohort studies. Breast Cancer Res Treat 127:23–31

    Article  CAS  PubMed  Google Scholar 

  34. Guo J, Wei W, Zhan L (2015) Red and processed meat intake and risk of breast cancer: a meta-analysis of prospective studies. Breast Cancer Res Treat 151:191–198

    Article  CAS  PubMed  Google Scholar 

  35. de Oliveira Otto MC, Mozaffarian D, Kromhout D, Bertoni AG, Sibley CT, Jacobs DR Jr et al (2012) Dietary intake of saturated fat by food source and incident cardiovascular disease: the Multi-Ethnic Study of Atherosclerosis. Am J Clin Nutr 96:397–404

    Article  PubMed  PubMed Central  Google Scholar 

  36. Vessby B, Uusitupa M, Hermansen K, Riccardi G, Rivellese AA, Tapsell LC et al (2001) Substituting dietary saturated for monounsaturated fat impairs insulin sensitivity in healthy men and women: The KANWU Study. Diabetologia 44:312–319

    Article  CAS  PubMed  Google Scholar 

  37. Thiebaut AC, Kipnis V, Chang SC, Subar AF, Thompson FE, Rosenberg PS et al (2007) Dietary fat and postmenopausal invasive breast cancer in the National Institutes of Health–AARP Diet and Health Study cohort. J Natl Cancer Inst 99:451–462

    Article  PubMed  Google Scholar 

  38. Psaltopoulou T, Kosti RI, Haidopoulos D, Dimopoulos M, Panagiotakos DB (2011) Olive oil intake is inversely related to cancer prevalence: a systematic review and a meta-analysis of 13,800 patients and 23,340 controls in 19 observational studies. Lipids Health Dis. doi:10.1186/1476-511X-10-127

    PubMed  PubMed Central  Google Scholar 

  39. Baghurst K, Record S, Leppard P (2000) Red meat consumption in Australia: intakes, nutrient contribution and changes over time. Aust J Nutr Diet 57:3S–36S

    Google Scholar 

  40. Anderson BM, Ma DW (2009) Are all n-3 polyunsaturated fatty acids created equal? Lipids Health Dis. doi:10.1186/1476-511X-8-33

    PubMed  PubMed Central  Google Scholar 

  41. English DR, MacInnis RJ, Hodge AM, Hopper JL, Haydon AM, Giles GG (2004) Red meat, chicken, and fish consumption and risk of colorectal cancer. Cancer Epidemiol Biomarkers Prev 13:1509–1514

    PubMed  Google Scholar 

  42. Saadatian-Elahi M, Toniolo P, Ferrari P, Goudable J, Akhmedkhanov A, Zeleniuch-Jacquotte A et al (2002) Serum fatty acids and risk of breast cancer in a nested case–control study of the New York University Women’s Health Study. Cancer Epidemiol Biomarkers Prev 11:1353–1360

    CAS  PubMed  Google Scholar 

  43. Calder PC (2004) n-3 fatty acids and cardiovascular disease: evidence explained and mechanisms explored. Clin Sci (Lond) 107:1–11

    Article  CAS  Google Scholar 

  44. Calder PC (2010) Omega-3 fatty acids and inflammatory processes. Nutrients 2:355–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Mozaffarian D, Wu JH (2011) Omega-3 fatty acids and cardiovascular disease: effects on risk factors, molecular pathways, and clinical events. J Am Coll Cardiol 58:2047–2067

    Article  CAS  PubMed  Google Scholar 

  46. Ferrucci L, Cherubini A, Bandinelli S, Bartali B, Corsi A, Lauretani F et al (2006) Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J Clin Endocrinol Metab 91:439–446

    Article  CAS  PubMed  Google Scholar 

  47. Murff HJ, Shu XO, Li H, Yang G, Wu X, Cai H et al (2011) Dietary polyunsaturated fatty acids and breast cancer risk in Chinese women: a prospective cohort study. Int J Cancer 128:1434–1441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Fritz V, Fajas L (2010) Metabolism and proliferation share common regulatory pathways in cancer cells. Oncogene 29:4369–4377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Wirfalt E, Mattisson I, Gullberg B, Olsson H, Berglund G (2005) Fat from different foods show diverging relations with breast cancer risk in postmenopausal women. Nutr Cancer 53:135–143

    Article  PubMed  Google Scholar 

  50. Sakai M, Kakutani S, Horikawa C, Tokuda H, Kawashima H, Shibata H et al (2012) Arachidonic acid and cancer risk: a systematic review of observational studies. BMC Cancer. doi:10.1186/1471-2407-12-606

    Google Scholar 

  51. Yang B, Ren X-L, Fu Y-Q, Gao J-L, Li D (2014) Ratio of n-3/n-6 PUFAs and risk of breast cancer: a meta-analysis of 274135 adult females from 11 independent prospective studies. BMC Cancer. doi:10.1186/1471-2407-14-105

    Google Scholar 

  52. Chajes V, Thiebaut AC, Rotival M, Gauthier E, Maillard V, Boutron-Ruault MC et al (2008) Association between serum trans-monounsaturated fatty acids and breast cancer risk in the E3N-EPIC Study. Am J Epidemiol 167:1312–1320

    Article  PubMed  PubMed Central  Google Scholar 

  53. Kohlmeier L, Simonsen N, van ‘t Veer P, Strain JJ, Martin-Moreno JM, Margolin B et al (1997) Adipose tissue trans fatty acids and breast cancer in the European Community Multicenter Study on Antioxidants, Myocardial Infarction, and Breast Cancer. Cancer Epidemiol Biomarkers Prev 6:705–710

    CAS  PubMed  Google Scholar 

  54. Tamimi RM, Colditz GA, Hazra A, Baer HJ, Hankinson SE, Rosner B et al (2012) Traditional breast cancer risk factors in relation to molecular subtypes of breast cancer. Breast Cancer Res Treat 131:159–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Lof M, Sandin S, Lagiou P, Hilakivi-Clarke L, Trichopoulos D, Adami HO et al (2007) Dietary fat and breast cancer risk in the Swedish women’s lifestyle and health cohort. Br J Cancer 97:1570–1576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Rosato V, Bertuccio P, Bosetti C, Negri E, Edefonti V, Ferraroni M et al (2013) Nutritional factors, physical activity, and breast cancer by hormonal receptor status. Breast 22:887–893

    Article  PubMed  Google Scholar 

  57. Prentice RL, Caan B, Chlebowski RT, Patterson R, Kuller LH, Ockene JK et al (2006) Low-fat dietary pattern and risk of invasive breast cancer: the Women’s Health Initiative Randomized Controlled Dietary Modification Trial. JAMA 295:629–642

    Article  CAS  PubMed  Google Scholar 

  58. Wu AH, Pike MC, Stram DO (1999) Meta-analysis: dietary fat intake, serum estrogen levels, and the risk of breast cancer. J Natl Cancer Inst 91:529–534

    Article  CAS  PubMed  Google Scholar 

  59. Clifton PM, Keogh JB, Noakes M (2004) Trans fatty acids in adipose tissue and the food supply are associated with myocardial infarction. J Nutr 134:874–879

    CAS  PubMed  Google Scholar 

  60. Mansour MP, Sinclair AJ (1993) The trans fatty acid and positional (sn-2) fatty acid composition of some Australian margarines, dairy blends and animal fats. Asia Pac J Clin Nutr 2:155–163

    CAS  PubMed  Google Scholar 

  61. Mozaffarian D, Pischon T, Hankinson SE, Rifai N, Joshipura K, Willett WC et al (2004) Dietary intake of trans fatty acids and systemic inflammation in women. Am J Clin Nutr 79:606–612

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Lim JN, Oh JJ, Wang T, Lee JS, Kim SH, Kim YJ et al (2014) trans-11 18:1 vaccenic acid (TVA) has a direct anti-carcinogenic effect on MCF-7 human mammary adenocarcinoma cells. Nutrients 6:627–636

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie K. Bassett.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bassett, J.K., Hodge, A.M., English, D.R. et al. Plasma phospholipids fatty acids, dietary fatty acids, and breast cancer risk. Cancer Causes Control 27, 759–773 (2016). https://doi.org/10.1007/s10552-016-0753-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-016-0753-2

Keywords

Navigation