Skip to main content

Advertisement

Log in

Tissue Doppler velocities for ruling out rejection in heart transplant recipients in the context of myocardial strain imaging: a multivariate, prospective, single-center study

  • Original Paper
  • Published:
The International Journal of Cardiovascular Imaging Aims and scope Submit manuscript

Abstract

To investigate the value of tissue Doppler velocities for ruling out treatment-requiring acute cellular rejection (TR-ACR), in the context of myocardial deformation analysis performed by means of speckle tracking echocardiography. We performed serial echocardiograms in 37 heart transplant recipients in their first year post-transplantation within 3 h of the routine surveillance endomyocardial biopsies (EMB). The association of the sum of lateral mitral annulus systolic (s′) and early diastolic (e′) velocities, in absolute values, measured by tissue Doppler echocardiography (s′+ e′), with TR-ACR (ACR grade ≥ 2R) was investigated by multivariate analysis, including classic echocardiographic parameters and myocardial deformation variables. A total of 251 pairs of EMB and echo exams were performed, 35 (14%) with rejection grade ≥ 2R (TR-ACR). s′ + e′ was independently associated to TR-ACR (OR 0.80, 95%CI 0.72–0.89, p < 0.0005), with a C statistic of 0.79 (95%CI 0.71–0.87, p < 0.0005) by ROC curve analysis. An  s′+ e′ value ≥ 23 cm/s, present in 43% of studies, had a negative predictive value of 98% for ruling out TR-ACR. Moreover, in the same patients, s′+ e′ significantly decreased when TR-ACR occurred after a study without this condition (− 3.7 ± 3.3 cm/s, p = 0.003), but it was similar when rejection status was the same in the present versus the previous study. A drop in s′+ e′ value < 2.7 cm/s from the previous echocardiogram, had a 99% negative predictive value for ruling out TR-ACR. Tissue Doppler velocities, a widely available echo parameter, were found to be a valuable marker for ruling out TR-ACR in this multivariate study which included myocardial deformation variables.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. González-Vílchez F, Gómez-Bueno M, Almenar-Bonet L, Crespo-Leiro MG, Arizón del Prado JM, Delgado-Jiménez J et al; Spanish heart transplant teams. Spanish Heart Transplant Registry. 28th Official Report of the Spanish Society of Cardiology Working Group on Heart Failure (1984–2016). Rev Esp Cardiol (Engl Ed) 2017;70:1098–1109.

  2. Costanzo MR, Dipchand A, Starling R, Anderson A, Chan M, Desai S et al (2010) The International Society of Heart and Lung Transplantation Guidelines for the care of heart transplant recipients. J Heart Lung Transplant 29:914–956

    Article  Google Scholar 

  3. Fiorelli AI, Coelho GH, Aiello VD, Benvenuti LA, Palazzo JF, Santos Júnior VP et al (2012) Tricuspid valve injury after heart transplantation due to endomyocardial biopsy: an analysis of 3550 biopsies. Transplant Proc 44:2479–2482

    Article  CAS  Google Scholar 

  4. Crespo-Leiro MG, Zuckermann A, Bara C, Mohacsi P, Schulz U, Boyle A et al (2012) Concordance among pathologists in the second Cardiac Allograft Rejection Gene Expression Observational Study (CARGO II). Transplantation 94:1172–1177

    Article  Google Scholar 

  5. Pham MX, Teuteberg JJ, Kfoury AG, Starling RC, Deng MC, Cappola TP et al (2010) IMAGE Study Group. Gene-expression profiling for rejection surveillance after cardiac transplantation. N Engl J Med 362:1890–1900

    Article  CAS  Google Scholar 

  6. Ahn KT, Choi JO, Lee GY, Park HD, Jeon ES (2015) Usefulness of high-sensitivity troponin I for the monitoring of subclinical acute cellular rejection after cardiac transplantation. Transplant Proc 47:504–510

    Article  CAS  Google Scholar 

  7. Sagar KB, Hastillo A, Wolfgang TC, Lower RR, Hess ML (1981) Left ventricular mass by M-mode echocardiography in cardiac transplant patients with acute rejection. Circulation 64:II217–220

    CAS  PubMed  Google Scholar 

  8. Angermann CE, Nassau K, Stempfle HU, Kruger TM, Drewello R, Junge R et al (1997) Recognition of acute cardiac allograft rejection from serial integrated backscatter analyses in human orthotopic heart transplant recipients*** Comparison with conventional echocardiography. Circulation 95:140–150

    Article  CAS  Google Scholar 

  9. Ciliberto GR, Mascarello M, Gronda E, Bonacina E, Anjos MC, Danzi G et al (1994) Acute rejection after heart transplantation: noninvasive echocardiographic evaluation. J Am Coll Cardiol 23:1156–1161

    Article  CAS  Google Scholar 

  10. Bourge RC, Rodriguez ER, Tan CD (2002) Cardiac allograft rejection. In: Kirklin JK, Young JB, McGiffin DC (eds) Heart Transplantation. Philadelphia, Churchill Livingstone, pp 464–520

    Google Scholar 

  11. Mena C, Wencker D, Krumholz HM, McNamara RL (2006) Detection of heart transplant rejection in adults by echocardiographic diastolic indices: a systematic review of the literature. J Am Soc Echocardiogr 19:1295–1300

    Article  Google Scholar 

  12. Sun JP, Abdalla IA, Asher CR, Greenberg NL, Popović ZB, Taylor DO et al (2005) Non-invasive evaluation of orthotopic heart transplant rejection by echocardiography. J Heart Lung Transplant 24:160–165

    Article  Google Scholar 

  13. Dandel M, Hummel M, Müller J, Wellnhofer E, Meyer R, Solowjowa N et al (2001) Reliability of tissue Doppler wall motion monitoring after heart transplantation for replacement of invasive routine screenings by optimally timed cardiac biopsies and catheterizations. Circulation 104(12 Suppl 1):I184–I191

    Article  CAS  Google Scholar 

  14. Mankad S, Murali S, Kormos RL, Gorcsan J, Mandarino WA (1999) Evaluation of the potential role of color-coded tissue Doppler echocardiography in the detection of allograft rejection in heart transplant recipients. Am Heart J 138:721–730

    Article  CAS  Google Scholar 

  15. Puleo JA, Aranda JM, Weston MW, Cintrón G, French M, Clark L et al (1998) Noninvasive detection of allograft rejection in heart transplant recipients by use of Doppler tissue imaging. J Heart Lung Transplant 17:176–184

    CAS  PubMed  Google Scholar 

  16. Marciniak A, Eroglu E, Marciniak M, Sirbu C, Herbots L, Droogne W et al (2007) The potential clinical role of ultrasonic strain and strain rate imaging in diagnosing acute rejection after heart transplantation. Eur J Echocardiogr 8:213–221

    Article  Google Scholar 

  17. Kato TS, Oda N, Hashimura K, Hashimoto S, Nakatani T, Ueda HI et al (2010) Strain rate imaging would predict sub-clinical acute rejection in heart transplant recipients. Eur J Cardiothorac Surg 37:1104–1110

    Article  Google Scholar 

  18. Roshanali F, Mandegar MH, Bagheri J, Sarzaeem MR, Chitsaz S, Alaeddini F et al (2010) Echo rejection score: new echocardiographic approach to diagnosis of heart transplant rejection. Eur J Cardiothorac Surg 38:176–180

    Article  Google Scholar 

  19. Pieper GM, Shah A, Harmann L, Cooley BC, Ionova IA, Migrino RQ (2010) Speckle-tracking 2-dimensional strain echocardiography: a new noninvasive imaging tool to evaluate acute rejection in cardiac transplantation. J Heart Lung Transplant 29:1039–1046

    Article  Google Scholar 

  20. Eleid MF, Caracciolo G, Cho EJ, Scott RL, Steidley DE, Wilansky S et al (2010) Natural history of left ventricular mechanics in transplanted hearts: relationships with clinical variables and genetic expression profiles of allograft rejection. JACC Cardiovasc Imaging 3:989–1000

    Article  Google Scholar 

  21. Sera F, Kato TS, Farr M, Russo C, Jin Z, Marboe CC et al (2014) Left ventricular longitudinal strain by speckle-tracking echocardiography is associated with treatment-requiring cardiac allograft rejection. J Card Fail 20:359–364

    Article  Google Scholar 

  22. Sehgal S, Blake JM, Sommerfield J, Aggarwal S (2015) Strain and strain rate imaging using speckle tracking in acute allograft rejection in children with heart transplantation. Pediatr Transpl 19:188–195

    Article  Google Scholar 

  23. Ruiz Ortiz M, Peña ML, Mesa D, Delgado M, Romo E, Santisteban M et al (2015) Impact of asymptomatic acute cellular rejection on left ventricle myocardial function evaluated by means of two-dimensional speckle tracking echocardiography in heart transplant recipients. Echocardiography 32:229–237

    Article  Google Scholar 

  24. Mingo-Santos S, Moñivas-Palomero V, Garcia-Lunar I, Mitroi CD, Goirigolzarri-Artaza J, Rivero B et al (2015) Usefulness of two-dimensional strain parameters to diagnose acute rejection after heart transplantation. J Am Soc Echocardiogr 28:1149–1156

    Article  Google Scholar 

  25. Clemmensen TS, Løgstrup BB, Eiskjær H, Poulsen SH (2015) Changes in longitudinal myocardial deformation during acute cardiac rejection: the clinical role of two-dimensional speckle-tracking echocardiography. J Am Soc Echocardiogr 28:330–339

    Article  Google Scholar 

  26. Ambardekar AV, Alluri N, Patel AC, Lindenfeld J, Dorosz JL (2015) Myocardial strain and strain rate from speckle-tracking echocardiography are unable to differentiate asymptomatic biopsy-proven cellular rejection in the first year after cardiac transplantation. J Am SocEchocardiogr 28:478–485

    Article  Google Scholar 

  27. Sade LE, Hazirolan T, Kozan H, Ozdemir H, Hayran M, Eroglu S et al (2019) T1 mapping by cardiac magnetic resonance and multidimensional speckle-tracking strain by echocardiography for the detection of acute cellular rejection in cardiac allograft recipients. JACC Cardiovasc Imaging 12:1601–1614

    Article  Google Scholar 

  28. Ruiz Ortiz M, Rodriguez Diego S, Delgado M, Kim J, Weinsaft JW, Ortega R et al (2019) Myocardial deformation and acute cellular rejection after heart transplantation: Impact of inter-vendor variability in diagnostic effectiveness. Echocardiography 36:2185–2194

    Article  Google Scholar 

  29. Farsalinos KE, Daraban AM, Ünlü S, Thomas JD, Badano LP, Voigt JU (2015) Head-to-head comparison of global longitudinal strain measurements among nine different vendors: The EACVI/ASE Inter-Vendor Comparison Study. J Am Soc Echocardiogr 28:1171–1181

    Article  Google Scholar 

  30. Voigt JU, Pedrizzetti G, Lysyansky P, Marwick TH, Houle H, Baumann R et al (2015) Definitions for a common standard for 2Dspeckle tracking echocardiography: consensus document of the EACVI/ASE/IndustryTask Force to standardize deformation imaging. J Am Soc Echocardiogr 28:183–193

    Article  Google Scholar 

  31. Gulati VK, Katz WE, Follansbee WP, Gorcsan J 3rd (1996) Mitral annular descent velocity by tissue Doppler echocardiography as an index of global left ventricular function. Am J Cardiol 77:979–984

    Article  CAS  Google Scholar 

  32. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF 3rd, Dokainish H, Edvardsen T et al (2016) Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 17:1321–1360

    Article  Google Scholar 

  33. Badano LP, Miglioranza MH, Edvardsen T, Colafranceschi AS, Muraru D, Bacal F et al (2015) European Association of Cardiovascular Imaging/Cardiovascular Imaging Department of the Brazilian Society of Cardiology recommendations for the use of cardiac imaging to assess and follow patients after heart transplantation. Eur Heart J Cardiovasc Imaging 16:919–948

    Article  Google Scholar 

  34. Stewart S, Winters GL, Fishbein MC, Tazelaar HD, Kobashigawa J, Abrams J et al (2005) Revision of the 1990 working formulation for the standardization of nomenclature in the diagnosis of heart rejection. J Heart Lung Transplant 24:1710–1720

    Article  Google Scholar 

  35. Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16:233–270

    Article  Google Scholar 

  36. Villanueva-Fernández E, Ruiz-Ortiz M, Mesa-Rubio D, Ortega MD, Romo-Peñas E, Toledano-Delgado F et al (2012) Feasibility of bidimensional speckle-tracking echocardiography for strain analysis in consecutive patients in daily clinical practice. Echocardiography 29:923–926

    Article  Google Scholar 

  37. Ambrosi P, Macé L, Habib G (2016) Predictive value of E/A and E/E' Doppler indexes for cardiac events in heart transplant recipients. Clin Transplant 30:959–963

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Michael David and Diana McKinley for their kind and rigorous help in language style correction.

Funding

This work has received an investigation grant of the Andalusian Society of Cardiology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín Ruiz Ortiz.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruiz Ortiz, M., Rodríguez Diego, S., Delgado Ortega, M. et al. Tissue Doppler velocities for ruling out rejection in heart transplant recipients in the context of myocardial strain imaging: a multivariate, prospective, single-center study. Int J Cardiovasc Imaging 36, 1455–1464 (2020). https://doi.org/10.1007/s10554-020-01843-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10554-020-01843-3

Keywords

Navigation