Skip to main content

Advertisement

Log in

Neutrophils: important contributors to tumor progression and metastasis

  • NON-THEMATIC REVIEW
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

The presence of neutrophils in tumors has traditionally been considered to be indicative of a failed immune response against cancers. However, there is now evidence showing that neutrophils can promote tumor growth, and increasingly, the data support an active role for neutrophils in tumor progression to distant metastasis. Neutrophils have been implicated in promoting metastasis in cancer patients, where neutrophil numbers and neutrophil-related factors and functions have been associated with progressive disease. Nevertheless, the role of neutrophils in tumors, both at the primary and secondary sites, remains controversial, with some studies reporting their anti-tumor functions. This review will focus on the data demonstrating a role for neutrophils in both tumor growth and metastasis and will attempt to clarify the discrepancies in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Coussens, L. M., & Werb, Z. (2002). Inflammation and cancer. Nature, 420(6917), 860–867.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Mantovani, A., Allavena, P., Sica, A., & Balkwill, F. (2008). Cancer-related inflammation. Nature, 454(7203), 436–444.

    Article  CAS  PubMed  Google Scholar 

  3. Pollard, J. W. (2004). Tumour-educated macrophages promote tumour progression and metastasis. Nature Reviews Cancer, 4(1), 71–78.

    Article  CAS  PubMed  Google Scholar 

  4. Allavena, P., Sica, A., Solinas, G., Porta, C., & Mantovani, A. (2008). The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Critical Reviews in Oncology/Hematology, 66(1), 1–9.

    Article  PubMed  Google Scholar 

  5. Chee, D. O., Townsend, C. M., Jr., Galbraith, M. A., Eilber, F. R., & Morton, D. L. (1978). Selective reduction of human tumor cell populations by human granulocytes in vitro. Cancer Research, 38(12), 4534–4539.

    CAS  PubMed  Google Scholar 

  6. Dvorak, A. M., Connell, A. B., Proppe, K., & Dvorak, H. F. (1978). Immunologic rejection of mammary adenocarcinoma (TA3-St) in C57BL/6 mice: participation of neutrophils and activated macrophages with fibrin formation. Journal of Immunology, 120(4), 1240–1248.

    CAS  Google Scholar 

  7. Di Carlo, E., Forni, G., & Musiani, P. (2003). Neutrophils in the antitumoral immune response. Chemical Immunology and Allergy, 83, 182–203.

    Article  PubMed  Google Scholar 

  8. Souto, J. C., Vila, L., & Bru, A. (2011). Polymorphonuclear neutrophils and cancer: intense and sustained neutrophilia as a treatment against solid tumors. Medicinal Research Reviews, 31(3), 311–363.

    Article  CAS  PubMed  Google Scholar 

  9. Yan, H. H., Pickup, M., Pang, Y., Gorska, A. E., Li, Z., Chytil, A., et al. (2010). Gr-1 + CD11b + myeloid cells tip the balance of immune protection to tumor promotion in the premetastatic lung. Cancer Research, 70(15), 6139–6149.

    Article  CAS  PubMed  Google Scholar 

  10. Kaplan, R. N., Riba, R. D., Zacharoulis, S., Bramley, A. H., Vincent, L., Costa, C., et al. (2005). VEGFR1-positive haematopoietic bone marrow progenitors initiate the pre-metastatic niche. Nature, 438(7069), 820–827.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Colotta, F., Re, F., Polentarutti, N., Sozzani, S., & Mantovani, A. (1992). Modulation of granulocyte survival and programmed cell death by cytokines and bacterial products. Blood, 80(8), 2012–2020.

    CAS  PubMed  Google Scholar 

  12. Smith, J. A. (1994). Neutrophils, host defense, and inflammation: a double-edged sword. Journal of Leukocyte Biology, 56(6), 672–686.

    CAS  PubMed  Google Scholar 

  13. Ley, K., Laudanna, C., Cybulsky, M. I., & Nourshargh, S. (2007). Getting to the site of inflammation: the leukocyte adhesion cascade updated. Nature Reviews Immunology, 7(9), 678–689.

    Article  CAS  PubMed  Google Scholar 

  14. Hermant, B., Bibert, S., Concord, E., Dublet, B., Weidenhaupt, M., Vernet, T., et al. (2003). Identification of proteases involved in the proteolysis of vascular endothelium cadherin during neutrophil transmigration. Journal of Biological Chemistry, 278(16), 14002–14012.

    Article  CAS  PubMed  Google Scholar 

  15. Nathan, C. (2006). Neutrophils and immunity: challenges and opportunities. Nature Reviews Immunology, 6(3), 173–182.

    Article  CAS  PubMed  Google Scholar 

  16. Mantovani, A., Cassatella, M. A., Costantini, C., & Jaillon, S. (2011). Neutrophils in the activation and regulation of innate and adaptive immunity. Nature Reviews Immunology, 11(8), 519–531.

    Article  CAS  PubMed  Google Scholar 

  17. Gabrilovich, D. I., Bronte, V., Chen, S. H., Colombo, M. P., Ochoa, A., Ostrand-Rosenberg, S., et al. (2007). The terminology issue for myeloid-derived suppressor cells. Cancer Research, 67(1), 425. author reply 426.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Bronte, V., Apolloni, E., Cabrelle, A., Ronca, R., Serafini, P., Zamboni, P., et al. (2000). Identification of a CD11b+/Gr-1+/CD31+ myeloid progenitor capable of activating or suppressing CD8+ T cells. Blood, 96(12), 3838–3846.

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Movahedi, K., Guilliams, M., Van den Bossche, J., Van den Bergh, R., Gysemans, C., Beschin, A., et al. (2008). Identification of discrete tumor-induced myeloid-derived suppressor cell subpopulations with distinct T cell-suppressive activity. Blood, 111(8), 4233–4244.

    Article  CAS  PubMed  Google Scholar 

  20. Li, H., Han, Y., Guo, Q., Zhang, M., & Cao, X. (2009). Cancer-expanded myeloid-derived suppressor cells induce anergy of NK cells through membrane-bound TGF-beta 1. Journal of Immunology, 182(1), 240–249.

    Article  CAS  Google Scholar 

  21. Rieber, N., Gille, C., Köstlin, N., Schäfer, I., Spring, B., Ost, M., et al. (2013). Neutrophilic myeloid-derived suppressor cells in cord blood modulate innate and adaptive immune responses. Clinical and Experimental Immunology, 174(1), 45–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  22. Hoechst, B., Voigtlaender, T., Ormandy, L., Gamrekelashvili, J., Zhao, F., Wedemeyer, H., et al. (2009). Myeloid derived suppressor cells inhibit natural killer cells in patients with hepatocellular carcinoma via the NKp30 receptor. Hepatology, 50(3), 799–807.

    Article  CAS  PubMed  Google Scholar 

  23. Cao, Y., Slaney, C. Y., Bidwell, B. N., Parker, B. S., Johnstone, C. N., Rautela, J., et al. (2014). BMP4 inhibits breast cancer metastasis by blocking myeloid-derived suppressor cell activity. Cancer Research, 74(18), 5091–5102.

    Article  CAS  PubMed  Google Scholar 

  24. Serafini, P., Mgebroff, S., Noonan, K., & Borrello, I. (2008). Myeloid-derived suppressor cells promote cross-tolerance in B-cell lymphoma by expanding regulatory T cells. Cancer Research, 68(13), 5439–5449.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Rodriguez, P. C., Quiceno, D. G., Zabaleta, J., Ortiz, B., Zea, A. H., Piazuelo, M. B., et al. (2004). Arginase I production in the tumor microenvironment by mature myeloid cells inhibits T-cell receptor expression and antigen-specific T-cell responses. Cancer Research, 64(16), 5839–5849.

    Article  CAS  PubMed  Google Scholar 

  26. Rotondo, R., Barisione, G., Mastracci, L., Grossi, F., Orengo, A. M., Costa, R., et al. (2009). IL-8 induces exocytosis of arginase 1 by neutrophil polymorphonuclears in nonsmall cell lung cancer. International Journal of Cancer, 125(4), 887–893.

    Article  CAS  Google Scholar 

  27. Schmielau, J., & Finn, O. J. (2001). Activated granulocytes and granulocyte-derived hydrogen peroxide are the underlying mechanism of suppression of T-cell function in advanced cancer patients. Cancer Research, 61(12), 4756–4760.

    CAS  PubMed  Google Scholar 

  28. Coffelt, S. B., Chen, Y. Y., Muthana, M., Welford, A. F., Tal, A. O., Scholz, A., et al. (2011). Angiopoietin 2 stimulates TIE2-expressing monocytes to suppress T cell activation and to promote regulatory T cell expansion. Journal of Immunology, 186(7), 4183–4190.

    Article  CAS  Google Scholar 

  29. Almand, B., Clark, J. I., Nikitina, E., van Beynen, J., English, N. R., Knight, S. C., et al. (2001). Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. Journal of Immunology, 166(1), 678–689.

    Article  CAS  Google Scholar 

  30. Bronte, V., Chappell, D. B., Apolloni, E., Cabrelle, A., Wang, M., Hwu, P., et al. (1999). Unopposed production of granulocyte-macrophage colony-stimulating factor by tumors inhibits CD8+ T cell responses by dysregulating antigen-presenting cell maturation. Journal of Immunology, 162(10), 5728–5737.

    CAS  Google Scholar 

  31. Youn, J. I., Kumar, V., Collazo, M., Nefedova, Y., Condamine, T., Cheng, P., et al. (2013). Epigenetic silencing of retinoblastoma gene regulates pathologic differentiation of myeloid cells in cancer. Nature Immunology, 14(3), 211–220.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Sawanobori, Y., Ueha, S., Kurachi, M., Shimaoka, T., Talmadge, J. E., Abe, J., et al. (2008). Chemokine-mediated rapid turnover of myeloid-derived suppressor cells in tumor-bearing mice. Blood, 111(12), 5457–5466.

    Article  CAS  PubMed  Google Scholar 

  33. Youn, J. I., Nagaraj, S., Collazo, M., & Gabrilovich, D. I. (2008). Subsets of myeloid-derived suppressor cells in tumor-bearing mice. Journal of Immunology, 181(8), 5791–5802.

    Article  CAS  Google Scholar 

  34. Augier, S., Ciucci, T., Luci, C., Carle, G. F., Blin-Wakkach, C., & Wakkach, A. (2010). Inflammatory blood monocytes contribute to tumor development and represent a privileged target to improve host immunosurveillance. Journal of Immunology, 185(12), 7165–7173.

    Article  CAS  Google Scholar 

  35. Fleming, T. J., Fleming, M. L., & Malek, T. R. (1993). Selective expression of Ly-6G on myeloid lineage cells in mouse bone marrow. RB6-8C5 mAb to granulocyte-differentiation antigen (Gr-1) detects members of the Ly-6 family. Journal of Immunology, 151(5), 2399–2408.

    CAS  Google Scholar 

  36. Rose, S., Misharin, A., & Perlman, H. (2012). A novel Ly6C/Ly6G-based strategy to analyze the mouse splenic myeloid compartment. Cytometry. Part A, 81(4), 343–350.

    Article  CAS  Google Scholar 

  37. Kusmartsev, S., & Gabrilovich, D. I. (2005). STAT1 signaling regulates tumor-associated macrophage-mediated T cell deletion. Journal of Immunology, 174(8), 4880–4891.

    Article  CAS  Google Scholar 

  38. Yang, L., DeBusk, L. M., Fukuda, K., Fingleton, B., Green-Jarvis, B., Shyr, Y., et al. (2004). Expansion of myeloid immune suppressor Gr + CD11b + cells in tumor-bearing host directly promotes tumor angiogenesis. Cancer Cell, 6(4), 409–421.

    Article  CAS  PubMed  Google Scholar 

  39. Peranzoni, E., Zilio, S., Marigo, I., Dolcetti, L., Zanovello, P., Mandruzzato, S., et al. (2010). Myeloid-derived suppressor cell heterogeneity and subset definition. Current Opinion in Immunology, 22(2), 238–244.

    Article  CAS  PubMed  Google Scholar 

  40. Kowanetz, M., Wu, X., Lee, J., Tan, M., Hagenbeek, T., Qu, X., et al. (2010). Granulocyte-colony stimulating factor promotes lung metastasis through mobilization of Ly6G + Ly6C+ granulocytes. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21248–21255.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Lenzo, J. C., Turner, A. L., Cook, A. D., Vlahos, R., Anderson, G. P., Reynolds, E. C., et al. (2011). Control of macrophage lineage populations by CSF-1 receptor and GM-CSF in homeostasis and inflammation. Immunology and Cell Biology, 90(4), 429–40.

    Article  PubMed  CAS  Google Scholar 

  42. Movahedi, K., Laoui, D., Gysemans, C., Baeten, M., Stange, G., Van den Bossche, J., et al. (2010). Different tumor microenvironments contain functionally distinct subsets of macrophages derived from Ly6C (high) monocytes. Cancer Research, 70(14), 5728–5739.

    Article  CAS  PubMed  Google Scholar 

  43. Granot, Z., Henke, E., Comen, E. A., King, T. A., Norton, L., & Benezra, R. (2011). Tumor entrained neutrophils inhibit seeding in the premetastatic lung. Cancer Cell, 20(3), 300–314.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Bao, Y., & Cao, X. (2011). Revisiting the protective and pathogenic roles of neutrophils: Ly-6G is key! European Journal of Immunology, 41(9), 2535–2538.

    Article  CAS  PubMed  Google Scholar 

  45. Carr, K. D., Sieve, A. N., Indramohan, M., Break, T. J., Lee, S., & Berg, R. E. (2011). Specific depletion reveals a novel role for neutrophil-mediated protection in the liver during Listeria monocytogenes infection. European Journal of Immunology, 41(9), 2666–2676.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  46. Bingle, L., Brown, N. J., & Lewis, C. E. (2002). The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. Journal of Pathology, 196(3), 254–265.

    Article  CAS  PubMed  Google Scholar 

  47. Condeelis, J., & Pollard, J. W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell, 124(2), 263–266.

    Article  CAS  PubMed  Google Scholar 

  48. Mantovani, A., Schioppa, T., Porta, C., Allavena, P., & Sica, A. (2006). Role of tumor-associated macrophages in tumor progression and invasion. Cancer and Metastasis Reviews, 25(3), 315–322.

    Article  PubMed  Google Scholar 

  49. Kershaw, M. H., Trapani, J. A., & Smyth, M. J. (1995). Cytotoxic lymphocytes: redirecting the cell-mediated immune response for the therapy of cancer. Therapeutic Immunology, 2(3), 173–181.

    CAS  PubMed  Google Scholar 

  50. Ghiringhelli, F., Menard, C., Martin, F., & Zitvogel, L. (2006). The role of regulatory T cells in the control of natural killer cells: relevance during tumor progression. Immunology Reviews, 214, 229–238.

    Article  CAS  Google Scholar 

  51. Orentas, R. J., Kohler, M. E., & Johnson, B. D. (2006). Suppression of anti-cancer immunity by regulatory T cells: back to the future. Seminars in Cancer Biology, 16(2), 137–149.

    Article  CAS  PubMed  Google Scholar 

  52. Mougiakakos, D., Choudhury, A., Lladser, A., Kiessling, R., & Johansson, C. C. (2010). Regulatory T cells in cancer. Advances in Cancer Research, 107, 57–117.

    Article  CAS  PubMed  Google Scholar 

  53. Draca, S. R. (1993). The participation of natural cytotoxicity in the control of malignant disease. Panminerva Medica, 35(3), 123–126.

    CAS  PubMed  Google Scholar 

  54. Alderson, K. L., & Sondel, P. M. (2011). Clinical cancer therapy by NK cells via antibody-dependent cell-mediated cytotoxicity. Journal of Biomedicine and Biotechnology, 2011, 379123.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  55. Gillgrass, A., & Ashkar, A. (2011). Stimulating natural killer cells to protect against cancer: recent developments. Expert Review of Clinical Immunology, 7(3), 367–382.

    Article  CAS  PubMed  Google Scholar 

  56. Johnson, G. R., Whitehead, R., & Nicola, N. A. (1985). Effects of a murine mammary tumor on in vivo and in vitro hemopoiesis. International Journal of Cell Cloning, 3(2), 91–105.

    Article  CAS  PubMed  Google Scholar 

  57. Hardy, C. L., & Balducci, L. (1986). Early hematopoietic events during tumor growth in mice. Journal of the National Cancer Institute, 76(3), 535–540.

    CAS  PubMed  Google Scholar 

  58. Wislez, M., Rabbe, N., Marchal, J., Milleron, B., Crestani, B., Mayaud, C., et al. (2003). Hepatocyte growth factor production by neutrophils infiltrating bronchioloalveolar subtype pulmonary adenocarcinoma: role in tumor progression and death. Cancer Research, 63(6), 1405–1412.

    CAS  PubMed  Google Scholar 

  59. Bellocq, A., Antoine, M., Flahault, A., Philippe, C., Crestani, B., Bernaudin, J. F., et al. (1998). Neutrophil alveolitis in bronchioloalveolar carcinoma: induction by tumor-derived interleukin-8 and relation to clinical outcome. American Journal of Pathology, 152(1), 83–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Clark, R. A., & Klebanoff, S. J. (1975). Neutrophil-mediated tumor cell cytotoxicity: role of the peroxidase system. Journal of Experimental Medicine, 141(6), 1442–1447.

    Article  CAS  PubMed  Google Scholar 

  61. Kondo, M., Kato, H., Yoshikawa, T., & Sugino, S. (1986). Treatment of cancer ascites by intraperitoneal administration of a streptococcal preparation OK-432 with fresh human complement—role of complement-derived chemotactic factor to neutrophils. International Journal of Immunopharmacology, 8(7), 715–721.

    Article  CAS  PubMed  Google Scholar 

  62. Lichtenstein, A. (1987). Stimulation of the respiratory burst of murine peritoneal inflammatory neutrophils by conjugation with tumor cells. Cancer Research, 47(9), 2211–2217.

    CAS  PubMed  Google Scholar 

  63. Lichtenstein, A., & Kahle, J. (1985). Anti-tumor effect of inflammatory neutrophils: characteristics of in vivo generation and in vitro tumor cell lysis. International Journal of Cancer, 35(1), 121–127.

    Article  CAS  Google Scholar 

  64. Pickaver, A. H., Ratcliffe, N. A., Williams, A. E., & Smith, H. (1972). Cytotoxic effects of peritoneal neutrophils on a syngeneic rat tumour. Nature - New Biology, 235(58), 186–187.

    Article  CAS  PubMed  Google Scholar 

  65. Inoue, T., & Sendo, F. (1983). In vitro induction of cytotoxic polymorphonuclear leukocytes by supernatant from a concanavalin A-stimulated spleen cell culture. Journal of Immunology, 131(5), 2508–2514.

    CAS  Google Scholar 

  66. Colombo, M. P., Lombardi, L., Stoppacciaro, A., Melani, C., Parenza, M., Bottazzi, B., et al. (1992). Granulocyte colony-stimulating factor (G-CSF) gene transduction in murine adenocarcinoma drives neutrophil-mediated tumor inhibition in vivo. Neutrophils discriminate between G-CSF-producing and G-CSF-nonproducing tumor cells. Journal of Immunology, 149(1), 113–119.

    CAS  Google Scholar 

  67. Musiani, P., Allione, A., Modica, A., Lollini, P. L., Giovarelli, M., Cavallo, F., et al. (1996). Role of neutrophils and lymphocytes in inhibition of a mouse mammary adenocarcinoma engineered to release IL-2, IL-4, IL-7, IL-10, IFN-alpha, IFN-gamma, and TNF-alpha. Laboratory Investigation, 74(1), 146–157.

    CAS  PubMed  Google Scholar 

  68. Colombo, M. P., Ferrari, G., Stoppacciaro, A., Parenza, M., Rodolfo, M., Mavilio, F., et al. (1991). Granulocyte colony-stimulating factor gene transfer suppresses tumorigenicity of a murine adenocarcinoma in vivo. Journal of Experimental Medicine, 173(4), 889–897.

    Article  CAS  PubMed  Google Scholar 

  69. Aeed, P. A., Nakajima, M., & Welch, D. R. (1988). The role of polymorphonuclear leukocytes (PMN) on the growth and metastatic potential of 13762NF mammary adenocarcinoma cells. International Journal of Cancer, 42(5), 748–759.

    Article  CAS  Google Scholar 

  70. Aeed, P. A., & Welch, D. R. (1988). Sensitivity of locally recurrent rat mammary tumour cell lines to syngeneic polymorphonuclear cell, macrophage and natural killer cell cytolysis. British Journal of Cancer, 58(6), 746–752.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Dallegri, F., Ballestrero, A., Ottonello, L., & Patrone, F. (1989). Defective antibody-dependent tumour cell lysis by neutrophils from cancer patients. Clinical and Experimental Immunology, 77(1), 58–61.

    PubMed Central  CAS  PubMed  Google Scholar 

  72. Trellakis, S., Bruderek, K., Dumitru, C. A., Gholaman, H., Gu, X., Bankfalvi, A., et al. (2010). Polymorphonuclear granulocytes in human head and neck cancer: enhanced inflammatory activity, modulation by cancer cells and expansion in advanced disease. International Journal of Cancer, 129(9), 2183–2193.

    Article  CAS  Google Scholar 

  73. Tazzyman, S., Barry, S. T., Ashton, S., Wood, P., Blakey, D., Lewis, C. E., et al. (2011). Inhibition of neutrophil infiltration into A549 lung tumors in vitro and in vivo using a CXCR2-specific antagonist is associated with reduced tumor growth. International Journal of Cancer, 129(4), 847–58.

    Article  CAS  Google Scholar 

  74. Shang, K., Bai, Y. P., Wang, C., Wang, Z., Gu, H. Y., Du, X., et al. (2012). Crucial involvement of tumor-associated neutrophils in the regulation of chronic colitis-associated carcinogenesis in mice. PLoS One, 7(12), e51848.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  75. Tazawa, H., Okada, F., Kobayashi, T., Tada, M., Mori, Y., Une, Y., et al. (2003). Infiltration of neutrophils is required for acquisition of metastatic phenotype of benign murine fibrosarcoma cells: implication of inflammation-associated carcinogenesis and tumor progression. American Journal of Pathology, 163(6), 2221–2232.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  76. Ishikawa, M., Koga, Y., Hosokawa, M., & Kobayashi, H. (1986). Augmentation of B16 melanoma lung colony formation in C57BL/6 mice having marked granulocytosis. International Journal of Cancer, 37(6), 919–924.

    Article  CAS  Google Scholar 

  77. Jung, M. R., Park, Y. K., Jeong, O., Seon, J. W., Ryu, S. Y., Kim, D. Y., et al. (2011). Elevated preoperative neutrophil to lymphocyte ratio predicts poor survival following resection in late stage gastric cancer. Journal of Surgical Oncology, 104(5), 504–510.

    Article  PubMed  Google Scholar 

  78. Shimada, H., Takiguchi, N., Kainuma, O., Soda, H., Ikeda, A., Cho, A., et al. (2010). High preoperative neutrophil-lymphocyte ratio predicts poor survival in patients with gastric cancer. Gastric Cancer, 13(3), 170–176.

    Article  PubMed  Google Scholar 

  79. Ubukata, H., Konishi, S., Nagata, H., Kasuga, N., Watanabe, Y., Goto, Y., et al. (2010). Significance of preoperative evaluations of tumor necrosis factor-alpha, the granulocyte/lymphocyte ratio and their correlation with regard to outcome in gastric cancer patients. Digestive Surgery, 27(4), 324–330.

    Article  CAS  PubMed  Google Scholar 

  80. Ding, P. R., An, X., Zhang, R. X., Fang, Y. J., Li, L. R., Chen, G., et al. (2010). Elevated preoperative neutrophil to lymphocyte ratio predicts risk of recurrence following curative resection for stage IIA colon cancer. International Journal of Colorectal Disease, 25(12), 1427–1433.

    Article  PubMed  Google Scholar 

  81. Roxburgh, C. S., Wallace, A. M., Guthrie, G. K., Horgan, P. G., & McMillan, D. C. (2010). Comparison of the prognostic value of tumour- and patient-related factors in patients undergoing potentially curative surgery for colon cancer. Colorectal Disease, 12(10), 987–994.

    Article  CAS  PubMed  Google Scholar 

  82. Chua, W., Charles, K. A., Baracos, V. E., & Clarke, S. J. (2011). Neutrophil/lymphocyte ratio predicts chemotherapy outcomes in patients with advanced colorectal cancer. British Journal of Cancer, 104(8), 1288–1295.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Tomita, M., Shimizu, T., Ayabe, T., Yonei, A., & Onitsuka, T. (2011). Preoperative neutrophil to lymphocyte ratio as a prognostic predictor after curative resection for non-small cell lung cancer. Anticancer Research, 31(9), 2995–2998.

    PubMed  Google Scholar 

  84. Sharaiha, R. Z., Halazun, K. J., Mirza, F., Port, J. L., Lee, P. C., Neugut, A. I., et al. (2011). Elevated preoperative neutrophil: lymphocyte ratio as a predictor of postoperative disease recurrence in esophageal cancer. Annals of Surgical Oncology, 18(12), 3362–9.

    Article  PubMed Central  PubMed  Google Scholar 

  85. Aliustaoglu, M., Bilici, A., Seker, M., Dane, F., Gocun, M., Konya, V., et al. (2010). The association of pre-treatment peripheral blood markers with survival in patients with pancreatic cancer. Hepato-Gastroenterology, 57(99–100), 640–645.

    PubMed  Google Scholar 

  86. An, X., Ding, P. R., Li, Y. H., Wang, F. H., Shi, Y. X., Wang, Z. Q., et al. (2010). Elevated neutrophil to lymphocyte ratio predicts survival in advanced pancreatic cancer. Biomarkers, 15(6), 516–522.

    Article  CAS  PubMed  Google Scholar 

  87. Bhatti, I., Peacock, O., Lloyd, G., Larvin, M., & Hall, R. I. (2010). Preoperative hematologic markers as independent predictors of prognosis in resected pancreatic ductal adenocarcinoma: neutrophil-lymphocyte versus platelet-lymphocyte ratio. American Journal of Surgery, 200(2), 197–203.

    Article  PubMed  Google Scholar 

  88. Tavares-Murta, B. M., Mendonca, M. A., Duarte, N. L., da Silva, J. A., Mutao, T. S., Garcia, C. B., et al. (2010). Systemic leukocyte alterations are associated with invasive uterine cervical cancer. International Journal of Gynecological Cancer, 20(7), 1154–1159.

    Article  PubMed  Google Scholar 

  89. Cho, H., Hur, H. W., Kim, S. W., Kim, S. H., Kim, J. H., Kim, Y. T., et al. (2009). Pre-treatment neutrophil to lymphocyte ratio is elevated in epithelial ovarian cancer and predicts survival after treatment. Cancer Immunology, Immunotherapy, 58(1), 15–23.

    Article  CAS  PubMed  Google Scholar 

  90. Thavaramara, T., Phaloprakarn, C., Tangjitgamol, S., & Manusirivithaya, S. (2011). Role of neutrophil to lymphocyte ratio as a prognostic indicator for epithelial ovarian cancer. Journal of the Medical Association of Thailand, 94(7), 871–877.

    PubMed  Google Scholar 

  91. Yamashita, J., Ogawa, M., & Shirakusa, T. (1995). Free-form neutrophil elastase is an independent marker predicting recurrence in primary breast cancer. Journal of Leukocyte Biology, 57(3), 375–378.

    CAS  PubMed  Google Scholar 

  92. Jensen, H. K., Donskov, F., Marcussen, N., Nordsmark, M., Lundbeck, F., & von der Maase, H. (2009). Presence of intratumoral neutrophils is an independent prognostic factor in localized renal cell carcinoma. Journal of Clinical Oncology, 27(28), 4709–4717.

    Article  PubMed  Google Scholar 

  93. Kuang, D. M., Zhao, Q., Wu, Y., Peng, C., Wang, J., Xu, Z., et al. (2011). Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. Journal of Hepatology, 54(5), 948–955.

    Article  CAS  PubMed  Google Scholar 

  94. Mentzel, T., Brown, L. F., Dvorak, H. F., Kuhnen, C., Stiller, K. J., Katenkamp, D., et al. (2001). The association between tumour progression and vascularity in myxofibrosarcoma and myxoid/round cell liposarcoma. Virchows Archiv, 438(1), 13–22.

    Article  CAS  PubMed  Google Scholar 

  95. Jensen, T. O., Schmidt, H., Moller, H. J., Donskov, F., Hoyer, M., & Sjoegren, P. (2011). Intratumoral neutrophils and plasmacytoid dendritic cells indicate poor prognosis and are associated with pSTAT3 expression in AJCC stage I/II melanoma. Cancer, 118(9), 2476–8.

    Article  PubMed  CAS  Google Scholar 

  96. Liu, H., Ubukata, H., Tabuchi, T., Takemura, A., Motohashi, G., Nishimura, M., et al. (2009). It is possible that tumour-infiltrating granulocytes promote tumour progression. Oncology Reports, 22(1), 29–33.

    PubMed  Google Scholar 

  97. Mantovani, A. (2009). The yin-yang of tumor-associated neutrophils. Cancer Cell, 16(3), 173–174.

    Article  CAS  PubMed  Google Scholar 

  98. Fridlender, Z. G., Sun, J., Kim, S., Kapoor, V., Cheng, G., Ling, L., et al. (2009). Polarization of tumor-associated neutrophil phenotype by TGF-beta: “N1” versus “N2” TAN. Cancer Cell, 16(3), 183–194.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Mantovani, A., Sica, A., & Locati, M. (2005). Macrophage polarization comes of age. Immunity, 23(4), 344–346.

    Article  CAS  PubMed  Google Scholar 

  100. Jablonska, J., Leschner, S., Westphal, K., Lienenklaus, S., & Weiss, S. (2010). Neutrophils responsive to endogenous IFN-beta regulate tumor angiogenesis and growth in a mouse tumor model. Journal of Clinical Investigation, 120(4), 1151–1164.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  101. Houghton, A. M. (2010). The paradox of tumor-associated neutrophils: fueling tumor growth with cytotoxic substances. Cell Cycle, 9(9), 1732–1737.

    Article  CAS  PubMed  Google Scholar 

  102. Mishalian, I., Bayuh, R., Levy, L., Zolotarov, L., Michaeli, J., & Fridlender, Z. G. (2013). Tumor-associated neutrophils (TAN) develop pro-tumorigenic properties during tumor progression. Cancer Immunology, Immunotherapy, 62(11), 1745–1756.

    Article  CAS  PubMed  Google Scholar 

  103. Wu, Q. D., Wang, J. H., Condron, C., Bouchier-Hayes, D., & Redmond, H. P. (2001). Human neutrophils facilitate tumor cell transendothelial migration. American Journal of Physiology - Cellular Physiology, 280(4), C814–822.

    CAS  Google Scholar 

  104. Wislez, M., Fleury-Feith, J., Rabbe, N., Moreau, J., Cesari, D., Milleron, B., et al. (2001). Tumor-derived granulocyte-macrophage colony-stimulating factor and granulocyte colony-stimulating factor prolong the survival of neutrophils infiltrating bronchoalveolar subtype pulmonary adenocarcinoma. American Journal of Pathology, 159(4), 1423–1433.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  105. Balkwill, F., & Mantovani, A. (2001). Inflammation and cancer: back to Virchow? Lancet, 357(9255), 539–545.

    Article  CAS  PubMed  Google Scholar 

  106. Hannelien, V., Karel, G., Jo, V. D., & Sofie, S. (2011). The role of CXC chemokines in the transition of chronic inflammation to esophageal and gastric cancer. Biochimica et Biophysica Acta, 1825(1), 117–129.

    PubMed  Google Scholar 

  107. Murdoch, C., & Finn, A. (2000). Chemokine receptors and their role in inflammation and infectious diseases. Blood, 95(10), 3032–3043.

    CAS  PubMed  Google Scholar 

  108. Waugh, D. J., & Wilson, C. (2008). The interleukin-8 pathway in cancer. Clinical Cancer Research, 14(21), 6735–6741.

    Article  CAS  PubMed  Google Scholar 

  109. Eck, M., Schmausser, B., Scheller, K., Brandlein, S., & Muller-Hermelink, H. K. (2003). Pleiotropic effects of CXC chemokines in gastric carcinoma: differences in CXCL8 and CXCL1 expression between diffuse and intestinal types of gastric carcinoma. Clinical and Experimental Immunology, 134(3), 508–515.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  110. Bieche, I., Chavey, C., Andrieu, C., Busson, M., Vacher, S., Le Corre, L., et al. (2007). CXC chemokines located in the 4q21 region are up-regulated in breast cancer. Endocrine-Related Cancer, 14(4), 1039–1052.

    Article  CAS  PubMed  Google Scholar 

  111. Cheng, W. L., Wang, C. S., Huang, Y. H., Tsai, M. M., Liang, Y., & Lin, K. H. (2011). Overexpression of CXCL1 and its receptor CXCR2 promote tumor invasion in gastric cancer. Annals of Oncology, 22(10), 2267–2276.

    Article  PubMed  Google Scholar 

  112. Strell, C., Lang, K., Niggemann, B., Zaenker, K. S., & Entschladen, F. (2010). Neutrophil granulocytes promote the migratory activity of MDA-MB-468 human breast carcinoma cells via ICAM-1. Experimental Cell Research, 316(1), 138–148.

    Article  CAS  PubMed  Google Scholar 

  113. di Celle, P. F., Carbone, A., Marchis, D., Zhou, D., Sozzani, S., Zupo, S., et al. (1994). Cytokine gene expression in B-cell chronic lymphocytic leukemia: evidence of constitutive interleukin-8 (IL-8) mRNA expression and secretion of biologically active IL-8 protein. Blood, 84(1), 220–228.

    PubMed  Google Scholar 

  114. Green, A. R., Green, V. L., White, M. C., & Speirs, V. (1997). Expression of cytokine messenger RNA in normal and neoplastic human breast tissue: identification of interleukin-8 as a potential regulatory factor in breast tumours. International Journal of Cancer, 72(6), 937–941.

    Article  CAS  Google Scholar 

  115. Tjiong, M. Y., van der Vange, N., ten Kate, F. J., Tjong, A. H. S. P., ter Schegget, J., Burger, M. P., et al. (1999). Increased IL-6 and IL-8 levels in cervicovaginal secretions of patients with cervical cancer. Gynecologic Oncology, 73(2), 285–291.

    Article  CAS  PubMed  Google Scholar 

  116. Scheibenbogen, C., Mohler, T., Haefele, J., Hunstein, W., & Keilholz, U. (1995). Serum interleukin-8 (IL-8) is elevated in patients with metastatic melanoma and correlates with tumour load. Melanoma Research, 5(3), 179–181.

    Article  CAS  PubMed  Google Scholar 

  117. Haqqani, A. S., Sandhu, J. K., & Birnboim, H. C. (2000). Expression of interleukin-8 promotes neutrophil infiltration and genetic instability in mutatect tumors. Neoplasia, 2(6), 561–568.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  118. Schaider, H., Oka, M., Bogenrieder, T., Nesbit, M., Satyamoorthy, K., Berking, C., et al. (2003). Differential response of primary and metastatic melanomas to neutrophils attracted by IL-8. International Journal of Cancer, 103(3), 335–343.

    Article  CAS  Google Scholar 

  119. Yao, C., Lin, Y., Chua, M. S., Ye, C. S., Bi, J., Li, W., et al. (2007). Interleukin-8 modulates growth and invasiveness of estrogen receptor-negative breast cancer cells. International Journal of Cancer, 121(9), 1949–1957.

    Article  CAS  Google Scholar 

  120. Maus, U. A., Waelsch, K., Kuziel, W. A., Delbeck, T., Mack, M., Blackwell, T. S., et al. (2003). Monocytes are potent facilitators of alveolar neutrophil emigration during lung inflammation: role of the CCL2-CCR2 axis. Journal of Immunology, 170(6), 3273–3278.

    Article  CAS  Google Scholar 

  121. Vlodavsky, I., Fuks, Z., Ishai-Michaeli, R., Bashkin, P., Levi, E., Korner, G., et al. (1991). Extracellular matrix-resident basic fibroblast growth factor: implication for the control of angiogenesis. Journal of Cellular Biochemistry, 45(2), 167–176.

    Article  CAS  PubMed  Google Scholar 

  122. Hanahan, D., & Weinberg, R. A. (2000). The hallmarks of cancer. Cell, 100(1), 57–70.

    Article  CAS  PubMed  Google Scholar 

  123. Lawrence, M. B., & Springer, T. A. (1993). Neutrophils roll on E-selectin. Journal of Immunology, 151(11), 6338–6346.

    CAS  Google Scholar 

  124. Woodfin, A., Voisin, M. B., & Nourshargh, S. (2010). Recent developments and complexities in neutrophil transmigration. Current Opinion in Hematology, 17(1), 9–17.

    Article  PubMed Central  PubMed  Google Scholar 

  125. Opdenakker, G., & Van Damme, J. (2004). The countercurrent principle in invasion and metastasis of cancer cells. Recent insights on the roles of chemokines. International Journal of Developmental Biology, 48(5–6), 519–527.

    Article  CAS  PubMed  Google Scholar 

  126. Piccard, H., Muschel, R. J., & Opdenakker, G. (2012). On the dual roles and polarized phenotypes of neutrophils in tumor development and progression. Critical Reviews in Oncology/Hematology, 82(3), 296–309.

    Article  CAS  PubMed  Google Scholar 

  127. Pham, C. T. (2006). Neutrophil serine proteases: specific regulators of inflammation. Nature Reviews Immunology, 6(7), 541–550.

    Article  CAS  PubMed  Google Scholar 

  128. Hager, M., Cowland, J. B., & Borregaard, N. (2010). Neutrophil granules in health and disease. Journal of Internal Medicine, 268(1), 25–34.

    CAS  PubMed  Google Scholar 

  129. Belaaouaj, A., McCarthy, R., Baumann, M., Gao, Z., Ley, T. J., Abraham, S. N., et al. (1998). Mice lacking neutrophil elastase reveal impaired host defense against gram negative bacterial sepsis. Nature Medicine, 4(5), 615–618.

    Article  CAS  PubMed  Google Scholar 

  130. Lee, W. L., & Downey, G. P. (2001). Leukocyte elastase: physiological functions and role in acute lung injury. American Journal of Respiratory and Critical Care Medicine, 164(5), 896–904.

    Article  CAS  PubMed  Google Scholar 

  131. Houghton, A. M., Rzymkiewicz, D. M., Ji, H., Gregory, A. D., Egea, E. E., Metz, H. E., et al. (2010). Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nature Medicine, 16(2), 219–223.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  132. Wada, Y., Yoshida, K., Hihara, J., Konishi, K., Tanabe, K., Ukon, K., et al. (2006). Sivelestat, a specific neutrophil elastase inhibitor, suppresses the growth of gastric carcinoma cells by preventing the release of transforming growth factor-alpha. Cancer Science, 97(10), 1037–1043.

    Article  CAS  PubMed  Google Scholar 

  133. Gong, L., Cumpian, A. M., Caetano, M. S., Ochoa, C. E., De la Garza, M. M., Lapid, D. J., et al. (2013). Promoting effect of neutrophils on lung tumorigenesis is mediated by CXCR2 and neutrophil elastase. Molecular Cancer, 12(1), 154.

    Article  PubMed Central  PubMed  Google Scholar 

  134. Clavel, C., Polette, M., Doco, M., Binninger, I., & Birembaut, P. (1992). Immunolocalization of matrix metallo-proteinases and their tissue inhibitor in human mammary pathology. Bulletin du Cancer, 79(3), 261–270.

    CAS  PubMed  Google Scholar 

  135. Hojilla, C. V., Wood, G. A., & Khokha, R. (2008). Inflammation and breast cancer: metalloproteinases as common effectors of inflammation and extracellular matrix breakdown in breast cancer. Breast Cancer Research, 10(2), 205.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  136. Pollard, J. W. (2008). Macrophages define the invasive microenvironment in breast cancer. Journal of Leukocyte Biology, 84(3), 623–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  137. Nielsen, B. S., Timshel, S., Kjeldsen, L., Sehested, M., Pyke, C., Borregaard, N., et al. (1996). 92 kDa type IV collagenase (MMP-9) is expressed in neutrophils and macrophages but not in malignant epithelial cells in human colon cancer. International Journal of Cancer, 65(1), 57–62.

    Article  CAS  Google Scholar 

  138. Nozawa, H., Chiu, C., & Hanahan, D. (2006). Infiltrating neutrophils mediate the initial angiogenic switch in a mouse model of multistage carcinogenesis. Proceedings of the National Academy of Sciences of the United States of America, 103(33), 12493–12498.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  139. Bausch, D., Pausch, T., Krauss, T., Hopt, U. T., Fernandez-del-Castillo, C., Warshaw, A. L., et al. (2011). Neutrophil granulocyte derived MMP-9 is a VEGF independent functional component of the angiogenic switch in pancreatic ductal adenocarcinoma. Angiogenesis, 14(3), 235–243.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  140. Bekes, E. M., Schweighofer, B., Kupriyanova, T. A., Zajac, E., Ardi, V. C., Quigley, J. P., et al. (2011). Tumor-recruited neutrophils and neutrophil TIMP-free MMP-9 regulate coordinately the levels of tumor angiogenesis and efficiency of malignant cell intravasation. American Journal of Pathology, 179(3), 1455–1470.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  141. Nakamura, T., Kuwai, T., Kim, J. S., Fan, D., Kim, S. J., & Fidler, I. J. (2007). Stromal metalloproteinase-9 is essential to angiogenesis and progressive growth of orthotopic human pancreatic cancer in parabiont nude mice. Neoplasia, 9(11), 979–986.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  142. Starkey, J. R., Liggitt, H. D., Jones, W., & Hosick, H. L. (1984). Influence of migratory blood cells on the attachment of tumor cells to vascular endothelium. International Journal of Cancer, 34(4), 535–543.

    Article  CAS  Google Scholar 

  143. Huh, S. J., Liang, S., Sharma, A., Dong, C., & Robertson, G. P. (2010). Transiently entrapped circulating tumor cells interact with neutrophils to facilitate lung metastasis development. Cancer Research, 70(14), 6071–6082.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  144. Carmeliet, P., & Jain, R. K. (2000). Angiogenesis in cancer and other diseases. Nature, 407(6801), 249–257.

    Article  CAS  PubMed  Google Scholar 

  145. Folkman, J. (2002). Role of angiogenesis in tumor growth and metastasis. Seminars in Oncology, 29(6 Suppl 16), 15–18.

    Article  CAS  PubMed  Google Scholar 

  146. Cassatella, M. A. (1999). Neutrophil-derived proteins: selling cytokines by the pound. Advances in Immunology, 73, 369–509.

    Article  CAS  PubMed  Google Scholar 

  147. Benelli, R., Albini, A., & Noonan, D. (2003). Neutrophils and angiogenesis: potential initiators of the angiogenic cascade. Chemical Immunology and Allergy, 83, 167–181.

    Article  CAS  PubMed  Google Scholar 

  148. Scapini, P., Morini, M., Tecchio, C., Minghelli, S., Di Carlo, E., Tanghetti, E., et al. (2004). CXCL1/macrophage inflammatory protein-2-induced angiogenesis in vivo is mediated by neutrophil-derived vascular endothelial growth factor-A. Journal of Immunology, 172(8), 5034–5040.

    Article  CAS  Google Scholar 

  149. Van Coillie, E., Van Aelst, I., Wuyts, A., Vercauteren, R., Devos, R., De Wolf-Peeters, C., et al. (2001). Tumor angiogenesis induced by granulocyte chemotactic protein-2 as a countercurrent principle. American Journal of Pathology, 159(4), 1405–1414.

    Article  PubMed Central  PubMed  Google Scholar 

  150. Coussens, L. M., Tinkle, C. L., Hanahan, D., & Werb, Z. (2000). MMP-9 supplied by bone marrow-derived cells contributes to skin carcinogenesis. Cell, 103(3), 481–490.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  151. Coussens, L. M., & Werb, Z. (1996). Matrix metalloproteinases and the development of cancer. Chemical Biology, 3(11), 895–904.

    Article  CAS  Google Scholar 

  152. Bergers, G., & Benjamin, L. E. (2003). Tumorigenesis and the angiogenic switch. Nature Reviews Cancer, 3(6), 401–410.

    Article  CAS  PubMed  Google Scholar 

  153. Egeblad, M., & Werb, Z. (2002). New functions for the matrix metalloproteinases in cancer progression. Nature Reviews Cancer, 2(3), 161–174.

    Article  CAS  PubMed  Google Scholar 

  154. Opdenakker, G., Van den Steen, P. E., Dubois, B., Nelissen, I., Van Coillie, E., Masure, S., et al. (2001). Gelatinase B functions as regulator and effector in leukocyte biology. Journal of Leukocyte Biology, 69(6), 851–859.

    CAS  PubMed  Google Scholar 

  155. Ardi, V. C., Kupriyanova, T. A., Deryugina, E. I., & Quigley, J. P. (2007). Human neutrophils uniquely release TIMP-free MMP-9 to provide a potent catalytic stimulator of angiogenesis. Proceedings of the National Academy of Sciences of the United States of America, 104(51), 20262–20267.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  156. Deryugina, E. I., Zajac, E., Juncker-Jensen, A., Kupriyanova, T. A., Welter, L., & Quigley, J. P. (2014). Tissue-infiltrating neutrophils constitute the major in vivo source of angiogenesis-inducing MMP-9 in the tumor microenvironment. Neoplasia, 16(10), 771–788.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  157. Morikawa, K., Kamegaya, S., Yamazaki, M., & Mizuno, D. (1985). Hydrogen peroxide as a tumoricidal mediator of murine polymorphonuclear leukocytes induced by a linear beta-1,3-D-glucan and some other immunomodulators. Cancer Research, 45(8), 3482–3486.

    CAS  PubMed  Google Scholar 

  158. Lambeth, J. D. (2004). NOX enzymes and the biology of reactive oxygen. Nature Reviews Immunology, 4(3), 181–189.

    Article  CAS  PubMed  Google Scholar 

  159. Babior, B. M., Lambeth, J. D., & Nauseef, W. (2002). The neutrophil NADPH oxidase. Archives of Biochemistry and Biophysics, 397(2), 342–344.

    Article  CAS  PubMed  Google Scholar 

  160. Fialkow, L., Wang, Y., & Downey, G. P. (2007). Reactive oxygen and nitrogen species as signaling molecules regulating neutrophil function. Free Radical Biology and Medicine, 42(2), 153–164.

    Article  CAS  PubMed  Google Scholar 

  161. Evans, T. J., Buttery, L. D., Carpenter, A., Springall, D. R., Polak, J. M., & Cohen, J. (1996). Cytokine-treated human neutrophils contain inducible nitric oxide synthase that produces nitration of ingested bacteria. Proceedings of the National Academy of Sciences of the United States of America, 93(18), 9553–9558.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  162. Wheeler, M. A., Smith, S. D., Garcia-Cardena, G., Nathan, C. F., Weiss, R. M., & Sessa, W. C. (1997). Bacterial infection induces nitric oxide synthase in human neutrophils. Journal of Clinical Investigation, 99(1), 110–116.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  163. Sandhu, J. K., Privora, H. F., Wenckebach, G., & Birnboim, H. C. (2000). Neutrophils, nitric oxide synthase, and mutations in the mutatect murine tumor model. American Journal of Pathology, 156(2), 509–518.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  164. Weitzman, S. A., & Gordon, L. I. (1990). Inflammation and cancer: role of phagocyte-generated oxidants in carcinogenesis. Blood, 76(4), 655–663.

    CAS  PubMed  Google Scholar 

  165. Wilkinson, D., Sandhu, J. K., Breneman, J. W., Tucker, J. D., & Birnboim, H. C. (1995). Hprt mutants in a transplantable murine tumour arise more frequently in vivo than in vitro. British Journal of Cancer, 72(5), 1234–1240.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  166. Tamir, S., & Tannenbaum, S. R. (1996). The role of nitric oxide (NO.) in the carcinogenic process. Biochimica et Biophysica Acta, 1288(2), F31–36.

    PubMed  Google Scholar 

  167. Knaapen, A. M., Gungor, N., Schins, R. P., Borm, P. J., & Van Schooten, F. J. (2006). Neutrophils and respiratory tract DNA damage and mutagenesis: a review. Mutagenesis, 21(4), 225–236.

    Article  CAS  PubMed  Google Scholar 

  168. Bronte, V., & Zanovello, P. (2005). Regulation of immune responses by L-arginine metabolism. Nature Reviews Immunology, 5(8), 641–654.

    Article  CAS  PubMed  Google Scholar 

  169. Peinado, H., Rafii, S., & Lyden, D. (2008). Inflammation joins the “niche”. Cancer Cell, 14(5), 347–349.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  170. Roy, L. D., Ghosh, S., Pathangey, L. B., Tinder, T. L., Gruber, H. E., & Mukherjee, P. (2011). Collagen induced arthritis increases secondary metastasis in MMTV-PyV MT mouse model of mammary cancer. BMC Cancer, 11, 365.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  171. Kaplan, R. N., Rafii, S., & Lyden, D. (2006). Preparing the “soil”: the premetastatic niche. Cancer Research, 66(23), 11089–11093.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  172. Yang, L., Huang, J., Ren, X., Gorska, A. E., Chytil, A., Aakre, M., et al. (2008). Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1 + CD11b + myeloid cells that promote metastasis. Cancer Cell, 13(1), 23–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  173. De Larco, J. E., Wuertz, B. R., & Furcht, L. T. (2004). The potential role of neutrophils in promoting the metastatic phenotype of tumors releasing interleukin-8. Clinical Cancer Research, 10(15), 4895–4900.

    Article  PubMed  Google Scholar 

  174. Welch, D. R., Schissel, D. J., Howrey, R. P., & Aeed, P. A. (1989). Tumor-elicited polymorphonuclear cells, in contrast to “normal” circulating polymorphonuclear cells, stimulate invasive and metastatic potentials of rat mammary adenocarcinoma cells. Proceedings of the National Academy of Sciences of the United States of America, 86(15), 5859–5863.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  175. Crissman, J. D., Hatfield, J., Schaldenbrand, M., Sloane, B. F., & Honn, K. V. (1985). Arrest and extravasation of B16 amelanotic melanoma in murine lungs. A light and electron microscopic study. Laboratory Investigation, 53(4), 470–478.

    CAS  PubMed  Google Scholar 

  176. Dong, C., Slattery, M. J., Liang, S., & Peng, H. H. (2005). Melanoma cell extravasation under flow conditions is modulated by leukocytes and endogenously produced interleukin 8. Molecular & Cellular Biomechanics, 2(3), 145–159.

    Google Scholar 

  177. Slattery, M. J., & Dong, C. (2003). Neutrophils influence melanoma adhesion and migration under flow conditions. International Journal of Cancer, 106(5), 713–722.

    Article  CAS  Google Scholar 

  178. Aceto, N., Bardia, A., Miyamoto, D. T., Donaldson, M. C., Wittner, B. S., Spencer, J. A., et al. (2014). Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell, 158(5), 1110–1122.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  179. Liotta, L. A., Saidel, M. G., & Kleinerman, J. (1976). The significance of hematogenous tumor cell clumps in the metastatic process. Cancer Research, 36(3), 889–894.

    CAS  PubMed  Google Scholar 

  180. Morimoto-Kamata, R., Mizoguchi, S., Ichisugi, T., & Yui, S. (2012). Cathepsin G induces cell aggregation of human breast cancer MCF-7 cells via a 2-step mechanism: catalytic site-independent binding to the cell surface and enzymatic activity-dependent induction of the cell aggregation. Mediators of Inflammation, 2012, 456462.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  181. Yui, S., Tomita, K., Kudo, T., Ando, S., & Yamazaki, M. (2005). Induction of multicellular 3-D spheroids of MCF-7 breast carcinoma cells by neutrophil-derived cathepsin G and elastase. Cancer Science, 96(9), 560–570.

    Article  CAS  PubMed  Google Scholar 

  182. Acuff, H. B., Carter, K. J., Fingleton, B., Gorden, D. L., & Matrisian, L. M. (2006). Matrix metalloproteinase-9 from bone marrow-derived cells contributes to survival but not growth of tumor cells in the lung microenvironment. Cancer Research, 66(1), 259–266.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  183. Fox, S., Leitch, A. E., Duffin, R., Haslett, C., & Rossi, A. G. (2010). Neutrophil apoptosis: relevance to the innate immune response and inflammatory disease. Journal of Innate Immunity, 2(3), 216–227.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  184. Filardy, A. A., Pires, D. R., Nunes, M. P., Takiya, C. M., Freire-de-Lima, C. G., Ribeiro-Gomes, F. L., et al. (2010). Proinflammatory clearance of apoptotic neutrophils induces an IL-12(low)IL-10(high) regulatory phenotype in macrophages. Journal of Immunology, 185(4), 2044–2050.

    Article  CAS  Google Scholar 

  185. Broug-Holub, E., Toews, G. B., van Iwaarden, J. F., Strieter, R. M., Kunkel, S. L., Paine, R., 3rd, et al. (1997). Alveolar macrophages are required for protective pulmonary defenses in murine Klebsiella pneumonia: elimination of alveolar macrophages increases neutrophil recruitment but decreases bacterial clearance and survival. Infection and Immunity, 65(4), 1139–1146.

    PubMed Central  CAS  PubMed  Google Scholar 

  186. Pahler, J. C., Tazzyman, S., Erez, N., Chen, Y. Y., Murdoch, C., Nozawa, H., et al. (2008). Plasticity in tumor-promoting inflammation: impairment of macrophage recruitment evokes a compensatory neutrophil response. Neoplasia, 10(4), 329–340.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  187. Silva, M. T. (2011). Macrophage phagocytosis of neutrophils at inflammatory/infectious foci: a cooperative mechanism in the control of infection and infectious inflammation. Journal of Leukocyte Biology, 89(5), 675–683.

    Article  CAS  PubMed  Google Scholar 

  188. Allenbach, C., Zufferey, C., Perez, C., Launois, P., Mueller, C., & Tacchini-Cottier, F. (2006). Macrophages induce neutrophil apoptosis through membrane TNF, a process amplified by Leishmania major. Journal of Immunology, 176(11), 6656–6664.

    Article  CAS  Google Scholar 

  189. Swierczak, A., Cook, A. D., Lenzo, J. C., Restall, C. M., Doherty, J. P., Anderson, R. L., et al. (2014). The promotion of breast cancer metastasis caused by inhibition of CSF-1R/CSF-1 signaling is blocked by targeting the G-CSF receptor. Cancer Immunology Research, 2(8), 765–776.

    Article  CAS  PubMed  Google Scholar 

  190. Denardo, D. G., Brennan, D. J., Rexhepaj, E., Ruffell, B., Shiao, S. L., Madden, S. F., et al. (2011). Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. Cancer Discovery, 1, 54–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  191. Ries, C. H., Cannarile, M. A., Hoves, S., Benz, J., Wartha, K., Runza, V., et al. (2014). Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. Cancer Cell, 25(6), 846–859.

    Article  CAS  PubMed  Google Scholar 

  192. Geissmann, F., Manz, M. G., Jung, S., Sieweke, M. H., Merad, M., & Ley, K. (2010). Development of monocytes, macrophages, and dendritic cells. Science, 327(5966), 656–661.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  193. Borregaard, N., & Cowland, J. B. (1997). Granules of the human neutrophilic polymorphonuclear leukocyte. Blood, 89(10), 3503–3521.

    CAS  PubMed  Google Scholar 

  194. Tazzyman, S., Lewis, C. E., & Murdoch, C. (2009). Neutrophils: key mediators of tumour angiogenesis. International Journal of Experimental Pathology, 90(3), 222–231.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  195. Arenberg, D. A., Kunkel, S. L., Polverini, P. J., Glass, M., Burdick, M. D., & Strieter, R. M. (1996). Inhibition of interleukin-8 reduces tumorigenesis of human non-small cell lung cancer in SCID mice. Journal of Clinical Investigation, 97(12), 2792–2802.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  196. Huang, S., Mills, L., Mian, B., Tellez, C., McCarty, M., Yang, X. D., et al. (2002). Fully humanized neutralizing antibodies to interleukin-8 (ABX-IL8) inhibit angiogenesis, tumor growth, and metastasis of human melanoma. American Journal of Pathology, 161(1), 125–134.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  197. Walters, I., Austin, C., Austin, R., Bonnert, R., Cage, P., Christie, M., et al. (2008). Evaluation of a series of bicyclic CXCR2 antagonists. Bioorganic and Medicinal Chemistry Letters, 18(2), 798–803.

    Article  CAS  PubMed  Google Scholar 

  198. Varney, M. L., Singh, S., Li, A., Mayer-Ezell, R., Bond, R., & Singh, R. K. (2011). Small molecule antagonists for CXCR2 and CXCR1 inhibit human colon cancer liver metastases. Cancer Letters, 300(2), 180–188.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  199. Singh, S., Sadanandam, A., Nannuru, K. C., Varney, M. L., Mayer-Ezell, R., Bond, R., et al. (2009). Small-molecule antagonists for CXCR2 and CXCR1 inhibit human melanoma growth by decreasing tumor cell proliferation, survival, and angiogenesis. Clinical Cancer Research, 15(7), 2380–2386.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  200. Ning, Y., Labonte, M. J., Zhang, W., Bohanes, P. O., Gerger, A., Yang, D., et al. (2012). The CXCR2 antagonist, SCH-527123, shows antitumor activity and sensitizes cells to oxaliplatin in preclinical colon cancer models. Molecular Cancer Therapeutics, 11(6), 1353–1364.

    Article  CAS  PubMed  Google Scholar 

  201. Coffelt, S. B., Kersten, K., Doornebal, C. W., Weiden, J., Vrijland, K., Hau, C. S., et al. (2015). IL-17-producing gammadelta T cells and neutrophils conspire to promote breast cancer metastasis. Nature, 522(7556), 345–8.

    Article  CAS  PubMed  Google Scholar 

  202. Gadducci, A., Sergiampietri, C., & Guiggi, I. (2013). Antiangiogenic agents in advanced, persistent or recurrent endometrial cancer: a novel treatment option. Gynecological Endocrinology, 29(9), 811–6.

    Article  CAS  PubMed  Google Scholar 

  203. Shojaei, F., Wu, X., Qu, X., Kowanetz, M., Yu, L., Tan, M., et al. (2009). G-CSF-initiated myeloid cell mobilization and angiogenesis mediate tumor refractoriness to anti-VEGF therapy in mouse models. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6742–6747.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  204. Phan, V. T., Wu, X., Cheng, J. H., Sheng, R. X., Chung, A. S., Zhuang, G., et al. (2013). Oncogenic RAS pathway activation promotes resistance to anti-VEGF therapy through G-CSF-induced neutrophil recruitment. Proceedings of the National Academy of Sciences of the United States of America, 110(15), 6079–6084.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  205. Shojaei, F., & Ferrara, N. (2008). Refractoriness to antivascular endothelial growth factor treatment: role of myeloid cells. Cancer Research, 68(14), 5501–5504.

    Article  CAS  PubMed  Google Scholar 

  206. Sanford, M. A., Yan, Y., Canfield, S. E., Hassan, W., Selleck, W. A., Atkinson, G., et al. (2001). Independent contributions of GR-1+ leukocytes and Fas/FasL interactions to induce apoptosis following interleukin-12 gene therapy in a metastatic model of prostate cancer. Human Gene Therapy, 12(12), 1485–1498.

    Article  CAS  PubMed  Google Scholar 

  207. Siders, W. M., Shields, J., Garron, C., Hu, Y., Boutin, P., Shankara, S., et al. (2010). Involvement of neutrophils and natural killer cells in the anti-tumor activity of alemtuzumab in xenograft tumor models. Leukemia and Lymphoma, 51(7), 1293–1304.

    Article  CAS  PubMed  Google Scholar 

  208. Hernandez-Ilizaliturri, F. J., Jupudy, V., Ostberg, J., Oflazoglu, E., Huberman, A., Repasky, E., et al. (2003). Neutrophils contribute to the biological antitumor activity of rituximab in a non-Hodgkin’s lymphoma severe combined immunodeficiency mouse model. Clinical Cancer Research, 9(16 Pt 1), 5866–5873.

    CAS  PubMed  Google Scholar 

  209. Thornton, L. M., Andersen, B. L., & Carson, W. E., 3rd. (2008). Immune, endocrine, and behavioral precursors to breast cancer recurrence: a case–control analysis. Cancer Immunology, Immunotherapy, 57(10), 1471–1481.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  210. Fridlender, Z. G., & Albelda, S. M. (2012). Tumor-associated neutrophils: friend or foe? Carcinogenesis, 33(5), 949–955.

    Article  CAS  PubMed  Google Scholar 

  211. Remedi, M. M., Donadio, A. C., & Chiabrando, G. A. (2009). Polymorphonuclear cells stimulate the migration and metastatic potential of rat sarcoma cells. International Journal of Experimental Pathology, 90(1), 44–51.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge funding from the National Health and Medical Research Council (NHMRC) of Australia, research fellowships to JAH (NHMRC) and RLA (National Breast Cancer Foundation), and scholarship support to AS (NHMRC) and KAM (Monash University).

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin L. Anderson.

Additional information

John A. Hamilton and Robin L. Anderson joint senior authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Swierczak, A., Mouchemore, K.A., Hamilton, J.A. et al. Neutrophils: important contributors to tumor progression and metastasis. Cancer Metastasis Rev 34, 735–751 (2015). https://doi.org/10.1007/s10555-015-9594-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-015-9594-9

Keywords

Navigation