Skip to main content

Advertisement

Log in

Patient-derived xenograft (PDX) models in basic and translational breast cancer research

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Patient-derived xenograft (PDX) models of a growing spectrum of cancers are rapidly supplanting long-established traditional cell lines as preferred models for conducting basic and translational preclinical research. In breast cancer, to complement the now curated collection of approximately 45 long-established human breast cancer cell lines, a newly formed consortium of academic laboratories, currently from Europe, Australia, and North America, herein summarizes data on over 500 stably transplantable PDX models representing all three clinical subtypes of breast cancer (ER+, HER2+, and “Triple-negative” (TNBC)). Many of these models are well-characterized with respect to genomic, transcriptomic, and proteomic features, metastatic behavior, and treatment response to a variety of standard-of-care and experimental therapeutics. These stably transplantable PDX lines are generally available for dissemination to laboratories conducting translational research, and contact information for each collection is provided. This review summarizes current experiences related to PDX generation across participating groups, efforts to develop data standards for annotation and dissemination of patient clinical information that does not compromise patient privacy, efforts to develop complementary data standards for annotation of PDX characteristics and biology, and progress toward “credentialing” of PDX models as surrogates to represent individual patients for use in preclinical and co-clinical translational research. In addition, this review highlights important unresolved questions, as well as current limitations, that have hampered more efficient generation of PDX lines and more rapid adoption of PDX use in translational breast cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Allred, D. C., Wu, Y., Mao, S., Nagtegaal, I. D., Lee, S., Perou, C. M., et al. (2008). Ductal carcinoma in situ and the emergence of diversity during breast cancer evolution. Clinical Cancer Research, 14(2), 370–378. doi:10.1158/1078-0432.CCR-07-1127.

    Article  CAS  PubMed  Google Scholar 

  2. Shipitsin, M., Campbell, L. L., Argani, P., Weremowicz, S., Bloushtain-Qimron, N., Yao, J., et al. (2007). Molecular definition of breast tumor heterogeneity. Cancer Cell, 11(3), 259–273. doi:10.1016/j.ccr.2007.01.013.

    Article  CAS  PubMed  Google Scholar 

  3. Allred, D. C., Harvey, J. M., Berardo, M., & Clark, G. M. (1998). Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Modern Pathology, 11(2), 155–168.

    CAS  PubMed  Google Scholar 

  4. Sorlie, T., Perou, C. M., Tibshirani, R., Aas, T., Geisler, S., Johnsen, H., et al. (2001). Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proceedings of the National Academy of Sciences of the United States of America, 98(19), 10869–10874. doi:10.1073/pnas.191367098 98/19/10869.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Prat, A., Parker, J. S., Karginova, O., Fan, C., Livasy, C., Herschkowitz, J. I., et al. (2010). Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Research, 12(5), R68. doi:10.1186/bcr2635.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Parker, J. S., Mullins, M., Cheang, M. C., Leung, S., Voduc, D., Vickery, T., et al. (2009). Supervised risk predictor of breast cancer based on intrinsic subtypes. Journal of Clinical Oncology, 27(8), 1160–1167. doi:10.1200/JCO.2008.18.1370.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Perou, C. M., Sorlie, T., Eisen, M. B., van de Rijn, M., Jeffrey, S. S., Rees, C. A., et al. (2000). Molecular portraits of human breast tumours. Nature, 406(6797), 747–752. doi:10.1038/35021093.

    Article  CAS  PubMed  Google Scholar 

  8. Hait, W. N. (2010). Anticancer drug development: the grand challenges. Nature Reviews. Drug Discovery, 9(4), 253–254. doi:10.1038/nrd3144.

    Article  CAS  PubMed  Google Scholar 

  9. Marusyk, A., & Polyak, K. (2010). Tumor heterogeneity: causes and consequences. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S. Review]. Biochimica et Biophysica Acta, 1805(1), 105–117. doi:10.1016/j.bbcan.2009.11.002.

    CAS  PubMed  Google Scholar 

  10. Park, S. Y., Lee, H. E., Li, H., Shipitsin, M., Gelman, R., & Polyak, K. (2010). Heterogeneity for stem cell-related markers according to tumor subtype and histologic stage in breast cancer. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Clinical cancer research : an official journal of the American Association for Cancer Research, 16(3), 876–887. doi:10.1158/1078-0432.CCR-09-1532.

    Article  CAS  Google Scholar 

  11. Burstein, H. J., Temin, S., Anderson, H., Buchholz, T. A., Davidson, N. E., Gelmon, K. E., et al. (2014). Adjuvant endocrine therapy for women with hormone receptor-positive breast cancer: American society of clinical oncology clinical practice guideline focused update. [Practice guideline]. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 32(21), 2255–2269. doi:10.1200/JCO.2013.54.2258.

    Article  Google Scholar 

  12. Ramakrishna, N., Temin, S., Chandarlapaty, S., Crews, J. R., Davidson, N. E., Esteva, F. J., et al. (2014). Recommendations on disease management for patients with advanced human epidermal growth factor receptor 2-positive breast cancer and brain metastases: American Society of Clinical Oncology clinical practice guideline. [Practice guideline research support, non-U.S. Gov’t review]. Journal of clinical oncology : official journal of the American Society of Clinical Oncology, 32(19), 2100–2108. doi:10.1200/JCO.2013.54.0955.

    Article  Google Scholar 

  13. Telli, M. L., Timms, K. M., Reid, J., Hennessy, B., Mills, G. B., Jensen, K. C., et al. (2016). Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clinical cancer research : an official journal of the American Association for Cancer Research, 22(15), 3764–3773. doi:10.1158/1078-0432.CCR-15-2477.

    Article  CAS  Google Scholar 

  14. Herschkowitz, J. I., Simin, K., Weigman, V. J., Mikaelian, I., Usary, J., Hu, Z., et al. (2007). Identification of conserved gene expression features between murine mammary carcinoma models and human breast tumors. Genome Biology, 8(5), R76. doi:10.1186/gb-2007-8-5-r76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Lim, E., Vaillant, F., Wu, D., Forrest, N. C., Pal, B., Hart, A. H., et al. (2009). Aberrant luminal progenitors as the candidate target population for basal tumor development in BRCA1 mutation carriers. Nature Medicine, 15(8), 907–913. doi:10.1038/nm.2000.

    Article  CAS  PubMed  Google Scholar 

  16. Li, X., Lewis, M. T., Huang, J., Gutierrez, C., Osborne, C. K., Wu, M. F., et al. (2008). Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Journal of the National Cancer Institute, 100(9), 672–679. doi:10.1093/jnci/djn123.

    Article  CAS  PubMed  Google Scholar 

  17. Banerji, S., Cibulskis, K., Rangel-Escareno, C., Brown, K. K., Carter, S. L., Frederick, A. M., et al. (2012). Sequence analysis of mutations and translocations across breast cancer subtypes. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature, 486(7403), 405–409. doi:10.1038/nature11154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Curtis, C., Shah, S. P., Chin, S. F., Turashvili, G., Rueda, O. M., Dunning, M. J., et al. (2012). The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature, 486(7403), 346–352. doi:10.1038/nature10983.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Network, T. C. G. A. (2012). Comprehensive molecular portraits of human breast tumours. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Nature, 490(7418), 61–70. doi:10.1038/nature11412.

    Article  CAS  Google Scholar 

  20. Shah, S. P., Roth, A., Goya, R., Oloumi, A., Ha, G., Zhao, Y., et al. (2012). The clonal and mutational evolution spectrum of primary triple-negative breast cancers. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Nature, 486(7403), 395–399. doi:10.1038/nature10933.

    CAS  PubMed  Google Scholar 

  21. Stephens, P. J., Tarpey, P. S., Davies, H., Van Loo, P., Greenman, C., Wedge, D. C., et al. (2012). The landscape of cancer genes and mutational processes in breast cancer. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature, 486(7403), 400–404. doi:10.1038/nature11017.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pereira, B., Chin, S. F., Rueda, O. M., Vollan, H. K., Provenzano, E., Bardwell, H. A., et al. (2016). Erratum: the somatic mutation profiles of 2,433 breast cancers refine their genomic and transcriptomic landscapes. Nature Communications, 7, 11908. doi:10.1038/ncomms11908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Pereira, B., Chin, S. F., Rueda, O. M., Vollan, H. K., Provenzano, E., Bardwell, H. A., et al. (2016). The somatic mutation profiles of 2,433 breast cancers refines their genomic and transcriptomic landscapes. Nature Communications, 7, 11479. doi:10.1038/ncomms11479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xu, H., Eirew, P., Mullaly, S. C., & Aparicio, S. (2014). The omics of triple-negative breast cancers. [Review]. Clinical Chemistry, 60(1), 122–133. doi:10.1373/clinchem.2013.207167.

    Article  CAS  PubMed  Google Scholar 

  25. Lehmann, B. D., Jovanovic, B., Chen, X., Estrada, M. V., Johnson, K. N., Shyr, Y., et al. (2016). Refinement of triple-negative breast cancer molecular subtypes: implications for neoadjuvant chemotherapy selection. PloS One, 11(6), e0157368. doi:10.1371/journal.pone.0157368.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Le Du, F., Eckhardt, B. L., Lim, B., Litton, J. K., Moulder, S., Meric-Bernstam, F., et al. (2015). Is the future of personalized therapy in triple-negative breast cancer based on molecular subtype? [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Oncotarget, 6(15), 12890–12908. doi:10.18632/oncotarget.3849.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Burstein, M. D., Tsimelzon, A., Poage, G. M., Covington, K. R., Contreras, A., Fuqua, S. A., et al. (2015). Comprehensive genomic analysis identifies novel subtypes and targets of triple-negative breast cancer. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Clinical Cancer Research, 21(7), 1688–1698. doi:10.1158/1078-0432.CCR-14-0432.

    Article  CAS  PubMed  Google Scholar 

  28. Abramson, V. G., Lehmann, B. D., Ballinger, T. J., & Pietenpol, J. A. (2015). Subtyping of triple-negative breast cancer: implications for therapy. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Cancer, 121(1), 8–16. doi:10.1002/cncr.28914.

    Article  PubMed  Google Scholar 

  29. Prabhu, J. S., Korlimarla, A., Desai, K., Alexander, A., Raghavan, R., Anupama, C., et al. (2014). A majority of low (1-10%) ER positive breast cancers behave like hormone receptor negative tumors. Journal of Cancer, 5(2), 156–165. doi:10.7150/jca.7668.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hammond, M. E., Hayes, D. F., Dowsett, M., Allred, D. C., Hagerty, K. L., Badve, S., et al. (2010). American Society of Clinical Oncology/College of American Pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer. Archives of Pathology & Laboratory Medicine, 134(6), 907–922. doi:10.1043/1543-2165-134.6.907.

    Google Scholar 

  31. Allott, E. H., Geradts, J., Sun, X., Cohen, S. M., Zirpoli, G. R., Khoury, T., et al. (2016). Intratumoral heterogeneity as a source of discordance in breast cancer biomarker classification. Breast Cancer Research, 18(1), 68. doi:10.1186/s13058-016-0725-1.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Wolff, A. C., Hammond, M. E., Hicks, D. G., Dowsett, M., McShane, L. M., Allison, K. H., et al. (2014). Recommendations for human epidermal growth factor receptor 2 testing in breast cancer: American Society of Clinical Oncology/College of American Pathologists clinical practice guideline update. [Practice guideline]. Archives of Pathology & Laboratory Medicine, 138(2), 241–256. doi:10.5858/arpa.2013-0953-SA.

    Article  Google Scholar 

  33. Nowell, P. C. (1976). The clonal evolution of tumor cell populations. [Research support, U.S. Gov’t, P.H.S.]. Science, 194(4260), 23–28.

    Article  CAS  PubMed  Google Scholar 

  34. De Luca, F., Rotunno, G., Salvianti, F., Galardi, F., Pestrin, M., Gabellini, S., et al. (2016). Mutational analysis of single circulating tumor cells by next generation sequencing in metastatic breast cancer. Oncotarget. doi:10.18632/oncotarget.8431.

    Google Scholar 

  35. Martelotto, L. G., Ng, C. K., Piscuoglio, S., Weigelt, B., & Reis-Filho, J. S. (2014). Breast cancer intra-tumor heterogeneity. [Research support, non-U.S. Gov’t review]. Breast Cancer Research, 16(3), 210. doi:10.1186/bcr3658.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Beca, F., & Polyak, K. (2016). Intratumor heterogeneity in breast cancer. Advances in Experimental Medicine and Biology, 882, 169–189. doi:10.1007/978-3-319-22909-6_7.

    Article  PubMed  Google Scholar 

  37. Ding, L., Ellis, M. J., Li, S., Larson, D. E., Chen, K., Wallis, J. W., et al. (2010). Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature, 464(7291), 999–1005. doi:10.1038/nature08989.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ha, G., Roth, A., Khattra, J., Ho, J., Yap, D., Prentice, L. M., et al. (2014). TITAN: inference of copy number architectures in clonal cell populations from tumor whole-genome sequence data. [Research support, non-U.S. Gov’t]. Genome Research, 24(11), 1881–1893. doi:10.1101/gr.180281.114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nik-Zainal, S., Van Loo, P., Wedge, D. C., Alexandrov, L. B., Greenman, C. D., Lau, K. W., et al. (2012). The life history of 21 breast cancers. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Cell, 149(5), 994–1007. doi:10.1016/j.cell.2012.04.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Roth, A., Khattra, J., Yap, D., Wan, A., Laks, E., Biele, J., et al. (2014). PyClone: statistical inference of clonal population structure in cancer. [Research support, non-U.S. Gov’t]. Nature Methods, 11(4), 396–398. doi:10.1038/nmeth.2883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Walter, M. J., Shen, D., Ding, L., Shao, J., Koboldt, D. C., Chen, K., et al. (2012). Clonal architecture of secondary acute myeloid leukemia. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. The New England Journal of Medicine, 366(12), 1090–1098. doi:10.1056/NEJMoa1106968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Baslan, T., Kendall, J., Rodgers, L., Cox, H., Riggs, M., Stepansky, A., et al. (2012). Genome-wide copy number analysis of single cells. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Nature Protocols, 7(6), 1024–1041. doi:10.1038/nprot.2012.039.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baslan, T., Kendall, J., Rodgers, L., Cox, H., Riggs, M., Stepansky, A., et al. (2016). Corrigendum: genome-wide copy number analysis of single cells. [Published erratum]. Nature Protocols, 11(3), 616. doi:10.1038/nprot0316.616b.

    Article  CAS  PubMed  Google Scholar 

  44. Eirew, P., Steif, A., Khattra, J., Ha, G., Yap, D., Farahani, H., et al. (2015). Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. [Research support, non-U.S. Gov’t]. Nature, 518(7539), 422–426. doi:10.1038/nature13952.

    Article  CAS  PubMed  Google Scholar 

  45. Hou, Y., Song, L., Zhu, P., Zhang, B., Tao, Y., Xu, X., et al. (2012). Single-cell exome sequencing and monoclonal evolution of a JAK2-negative myeloproliferative neoplasm. [Research support, non-U.S. Gov’t]. Cell, 148(5), 873–885. doi:10.1016/j.cell.2012.02.028.

    Article  CAS  PubMed  Google Scholar 

  46. Navin, N., Kendall, J., Troge, J., Andrews, P., Rodgers, L., McIndoo, J., et al. (2011). Tumour evolution inferred by single-cell sequencing. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Nature, 472(7341), 90–94. doi:10.1038/nature09807.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Potter, N. E., Ermini, L., Papaemmanuil, E., Cazzaniga, G., Vijayaraghavan, G., Titley, I., et al. (2013). Single-cell mutational profiling and clonal phylogeny in cancer. [Research support, non-U.S. Gov’t]. Genome Research, 23(12), 2115–2125. doi:10.1101/gr.159913.113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang, Y., Waters, J., Leung, M. L., Unruh, A., Roh, W., Shi, X., et al. (2014). Clonal evolution in breast cancer revealed by single nucleus genome sequencing. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature, 512(7513), 155–160. doi:10.1038/nature13600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Shah, S. P., Morin, R. D., Khattra, J., Prentice, L., Pugh, T., Burleigh, A., et al. (2009). Mutational evolution in a lobular breast tumour profiled at single nucleotide resolution. Nature, 461(7265), 809–813. doi:10.1038/nature08489.

    Article  CAS  PubMed  Google Scholar 

  50. Campbell, P. J., Pleasance, E. D., Stephens, P. J., Dicks, E., Rance, R., Goodhead, I., et al. (2008). Subclonal phylogenetic structures in cancer revealed by ultra-deep sequencing. Proceedings of the National Academy of Sciences of the United States of America, 105(35), 13081–13086. doi:10.1073/pnas.0801523105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Marusyk, A., Tabassum, D. P., Altrock, P. M., Almendro, V., Michor, F., & Polyak, K. (2014). Non-cell-autonomous driving of tumour growth supports sub-clonal heterogeneity. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Nature, 514(7520), 54–58. doi:10.1038/nature13556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Beckhove, P., Schutz, F., Diel, I. J., Solomayer, E. F., Bastert, G., Foerster, J., et al. (2003). Efficient engraftment of human primary breast cancer transplants in nonconditioned NOD/Scid mice. International Journal of Cancer, 105(4), 444–453. doi:10.1002/ijc.11125.

    Article  CAS  PubMed  Google Scholar 

  53. Visonneau, S., Cesano, A., Torosian, M. H., Miller, E. J., & Santoli, D. (1998). Growth characteristics and metastatic properties of human breast cancer xenografts in immunodeficient mice. The American Journal of Pathology, 152(5), 1299–1311.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, X., Claerhout, S., Prat, A., Dobrolecki, L. E., Petrovic, I., Lai, Q., et al. (2013). A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Research, 73(15), 4885–4897. doi:10.1158/0008-5472.CAN-12-4081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fichtner, I., Becker, M., Zeisig, R., & Sommer, A. (2004). In vivo models for endocrine-dependent breast carcinomas: special considerations of clinical relevance. European Journal of Cancer, 40(6), 845–851. doi:10.1016/j.ejca.2003.11.030.

    Article  CAS  PubMed  Google Scholar 

  56. McManus, M. J., & Welsch, C. W. (1980). DNA synthesis of benign human breast tumors in the untreated athymic “nude” mouse. An in vivo model to study hormonal influences on growth of human breast tissues. Cancer, 45(8), 2160–2165.

    Article  CAS  PubMed  Google Scholar 

  57. Murthy, M. S., Scanlon, E. F., Jelachich, M. L., Klipstein, S., & Goldschmidt, R. A. (1995). Growth and metastasis of human breast cancers in athymic nude mice. Clinical & Experimental Metastasis, 13(1), 3–15.

    Article  CAS  Google Scholar 

  58. Naundorf, H., Fichtner, I., Buttner, B., & Frege, J. (1992). Establishment and characterization of a new human oestradiol- and progesterone-receptor-positive mammary carcinoma serially transplantable in nude mice. Journal of Cancer Research and Clinical Oncology, 119(1), 35–40.

    Article  CAS  PubMed  Google Scholar 

  59. Noel, A., Borcy, V., Bracke, M., Gilles, C., Bernard, J., Birembaut, P., et al. (1995). Heterotransplantation of primary and established human tumour cells in nude mice. Anticancer Research, 15(1), 1–7.

    CAS  PubMed  Google Scholar 

  60. Outzen, H. C., & Custer, R. P. (1975). Growth of human normal and neoplastic mammary tissues in the cleared mammary fat pad of the nude mouse. Journal of the National Cancer Institute, 55(6), 1461–1466.

    CAS  PubMed  Google Scholar 

  61. Rae-Venter, B., & Reid, L. M. (1980). Growth of human breast carcinomas in nude mice and subsequent establishment in tissue culture. Cancer Research, 40(1), 95–100.

    CAS  PubMed  Google Scholar 

  62. Sakakibara, T., Xu, Y., Bumpers, H. L., Chen, F. A., Bankert, R. B., Arredondo, M. A., et al. (1996). Growth and metastasis of surgical specimens of human breast carcinomas in SCID mice. The Cancer Journal from Scientific American, 2(5), 291–300.

    CAS  PubMed  Google Scholar 

  63. Sebesteny, A., Taylor-Papadimitriou, J., Ceriani, R., Millis, R., Schmitt, C., & Trevan, D. (1979). Primary human breast carcinomas transplantable in the nude mouse. Journal of the National Cancer Institute, 63(6), 1331–1337.

    CAS  PubMed  Google Scholar 

  64. Sheffield, L. G., & Welsch, C. W. (1988). Transplantation of human breast epithelia to mammary-gland-free fat-pads of athymic nude mice: influence of mammotrophic hormones on growth of breast epithelia. International Journal of Cancer, 41(5), 713–719.

    Article  CAS  PubMed  Google Scholar 

  65. Shultz, L. D., Ishikawa, F., & Greiner, D. L. (2007). Humanized mice in translational biomedical research. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Nature Reviews. Immunology, 7(2), 118–130. doi:10.1038/nri2017.

    Article  CAS  PubMed  Google Scholar 

  66. Zhang, X., & Lewis, M. T. (2013). Establishment of patient-derived xenograft (PDX) models of human breast cancer. Current Protocols in Mouse Biology, 3, 21–29. doi:10.1002/9780470942390.mo120140.

    PubMed  Google Scholar 

  67. Zhang, H., Cohen, A. L., Krishnakumar, S., Wapnir, I. L., Veeriah, S., Deng, G., et al. (2014). Patient-derived xenografts of triple-negative breast cancer reproduce molecular features of patient tumors and respond to mTOR inhibition. Breast Cancer Research, 16(2), R36. doi:10.1186/bcr3640.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Marangoni, E., Vincent-Salomon, A., Auger, N., Degeorges, A., Assayag, F., de Cremoux, P., et al. (2007). A new model of patient tumor-derived breast cancer xenografts for preclinical assays. Clinical Cancer Research, 13(13), 3989–3998. doi:10.1158/1078-0432.CCR-07-0078.

    Article  CAS  PubMed  Google Scholar 

  69. Kabos, P., Finlay-Schultz, J., Li, C., Kline, E., Finlayson, C., Wisell, J., et al. (2012). Patient-derived luminal breast cancer xenografts retain hormone receptor heterogeneity and help define unique estrogen-dependent gene signatures. Breast Cancer Research and Treatment, 135(2), 415–432. doi:10.1007/s10549-012-2164-8.

    Article  CAS  PubMed  Google Scholar 

  70. Al-Hajj, M., Wicha, M. S., Benito-Hernandez, A., Morrison, S. J., & Clarke, M. F. (2003). Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100(7), 3983–3988. doi:10.1073/pnas.0530291100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. DeRose, Y. S., Wang, G., Lin, Y. C., Bernard, P. S., Buys, S. S., Ebbert, M. T., et al. (2011). Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nature Medicine, 17(11), 1514–1520. doi:10.1038/nm.2454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. DeRose, Y. S., Gligorich, K. M., Wang, G., Georgelas, A., Bowman, P., Courdy, S. J., et al. (2013). Patient-derived models of human breast cancer: protocols for in vitro and in vivo applications in tumor biology and translational medicine. Curr Protoc Pharmacol, Chapter 14(Unit14), 23. doi:10.1002/0471141755.ph1423s60.

    PubMed  Google Scholar 

  73. Li, S., Shen, D., Shao, J., Crowder, R., Liu, W., Prat, A., et al. (2013). Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts. Cell Reports, 4(6), 1116–1130. doi:10.1016/j.celrep.2013.08.022.

    Article  CAS  PubMed  Google Scholar 

  74. Vaillant, F., Merino, D., Lee, L., Breslin, K., Pal, B., Ritchie, M. E., et al. (2013). Targeting BCL-2 with the BH3 mimetic ABT-199 in estrogen receptor-positive breast cancer. Cancer Cell, 24(1), 120–129. doi:10.1016/j.ccr.2013.06.002.

    Article  CAS  PubMed  Google Scholar 

  75. Kuperwasser, C., Chavarria, T., Wu, M., Magrane, G., Gray, J. W., Carey, L., et al. (2004). Reconstruction of functionally normal and malignant human breast tissues in mice. Proceedings of the National Academy of Sciences of the United States of America, 101(14), 4966–4971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Lewis, M. T. (2012). Xenograft models of the normal and malignant human breast. In X. Wang (Ed.), Translational animal models in drug discovery and development (pp. 122–138). Sharjah: Bentham Science Publishers.

    Google Scholar 

  77. Whittle, J. R., Lewis, M. T., Lindeman, G. J., & Visvader, J. E. (2015). Patient-derived xenograft models of breast cancer and their predictive power. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Breast Cancer Research, 17, 17. doi:10.1186/s13058-015-0523-1.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Lum, D. H., Matsen, C., Welm, A. L., & Welm, B. E. (2012). Overview of human primary tumorgraft models: comparisons with traditional oncology preclinical models and the clinical relevance and utility of primary tumorgrafts in basic and translational oncology research. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Curr Protoc Pharmacol, Chapter 14(Unit 14), 22. doi:10.1002/0471141755.ph1422s59.

    PubMed  Google Scholar 

  79. Hidalgo, M., Amant, F., Biankin, A. V., Budinska, E., Byrne, A. T., Caldas, C., et al. (2014). Patient-derived xenograft models: an emerging platform for translational cancer research. [Review]. Cancer Discovery, 4(9), 998–1013. doi:10.1158/2159-8290.CD-14-0001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Neve, R. M., Chin, K., Fridlyand, J., Yeh, J., Baehner, F. L., Fevr, T., et al. (2006). A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. Cancer Cell, 10(6), 515–527. doi:10.1016/j.ccr.2006.10.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hollestelle, A., Nagel, J. H., Smid, M., Lam, S., Elstrodt, F., Wasielewski, M., et al. (2009). Distinct gene mutation profiles among luminal-type and basal-type breast cancer cell lines. Breast Cancer Research and Treatment. doi:10.1007/s10549-009-0460-8.

    Google Scholar 

  82. Chin, K., DeVries, S., Fridlyand, J., Spellman, P. T., Roydasgupta, R., Kuo, W. L., et al. (2006). Genomic and transcriptional aberrations linked to breast cancer pathophysiologies. Cancer Cell, 10(6), 529–541. doi:10.1016/j.ccr.2006.10.009.

    Article  CAS  PubMed  Google Scholar 

  83. Bonnefoi, H., Potti, A., Delorenzi, M., Mauriac, L., Campone, M., Tubiana-Hulin, M., et al. (2007). Validation of gene signatures that predict the response of breast cancer to neoadjuvant chemotherapy: a substudy of the EORTC 10994/BIG 00-01 clinical trial. The Lancet Oncology, 8(12), 1071–1078. doi:10.1016/S1470-2045(07)70345-5.

    Article  CAS  PubMed  Google Scholar 

  84. Potti, A., Dressman, H. K., Bild, A., Riedel, R. F., Chan, G., Sayer, R., et al. (2006). Genomic signatures to guide the use of chemotherapeutics. Nature Medicine, 12(11), 1294–1300. doi:10.1038/nm1491.

    Article  CAS  PubMed  Google Scholar 

  85. Salter, K. H., Acharya, C. R., Walters, K. S., Redman, R., Anguiano, A., Garman, K. S., et al. (2008). An integrated approach to the prediction of chemotherapeutic response in patients with breast cancer. PloS One, 3(4), e1908. doi:10.1371/journal.pone.0001908.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Liedtke, C., Wang, J., Tordai, A., Symmans, W. F., Hortobagyi, G. N., Kiesel, L., et al. (2009). Clinical evaluation of chemotherapy response predictors developed from breast cancer cell lines. Breast Cancer Research and Treatment. doi:10.1007/s10549-009-0445-7.

    PubMed  Google Scholar 

  87. Wu, M., & Robinson, M. O. (2009). Human-in-mouse breast cancer model. Cell Cycle, 8(15), 2317–2318.

    Article  CAS  PubMed  Google Scholar 

  88. Rottenberg, S., Pajic, M., & Jonkers, J. (2010). Studying drug resistance using genetically engineered mouse models for breast cancer. [Research support, non-U.S. Gov’t]. Methods in Molecular Biology, 596, 33–45. doi:10.1007/978-1-60761-416-6_3.

    Article  CAS  PubMed  Google Scholar 

  89. Cardiff, R. D. (2001). Validity of mouse mammary tumour models for human breast cancer: comparative pathology. Microscopy Research and Technique, 52(2), 224–230. doi:10.1002/1097-0029(20010115)52:2<224::AID-JEMT1007>3.0.CO;2-A.

    Article  CAS  PubMed  Google Scholar 

  90. Kim, J. B., O’Hare, M. J., & Stein, R. (2004). Models of breast cancer: is merging human and animal models the future? Breast Cancer Research, 6(1), 22–30. doi:10.1186/bcr645 bcr645.

    Article  CAS  PubMed  Google Scholar 

  91. Clarke, R. (1996). Human breast cancer cell line xenografts as models of breast cancer. The immunobiologies of recipient mice and the characteristics of several tumorigenic cell lines. Breast Cancer Research and Treatment, 39(1), 69–86.

    Article  CAS  PubMed  Google Scholar 

  92. Kenny, P. A., Lee, G. Y., Myers, C. A., Neve, R. M., Semeiks, J. R., Spellman, P. T., et al. (2007). The morphologies of breast cancer cell lines in three-dimensional assays correlate with their profiles of gene expression. Molecular Oncology, 1(1), 84–96. doi:10.1016/j.molonc.2007.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Weigelt, B., Lo, A. T., Park, C. C., Gray, J. W., & Bissell, M. J. (2009). HER2 signaling pathway activation and response of breast cancer cells to HER2-targeting agents is dependent strongly on the 3D microenvironment. Breast Cancer Research and Treatment. doi:10.1007/s10549-009-0502-2.

    PubMed Central  Google Scholar 

  94. Gillet, J. P., Calcagno, A. M., Varma, S., Marino, M., Green, L. J., Vora, M. I., et al. (2011). Redefining the relevance of established cancer cell lines to the study of mechanisms of clinical anti-cancer drug resistance. Proceedings of the National Academy of Sciences of the United States of America, 108(46), 18708–18713. doi:10.1073/pnas.1111840108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Johnson, J. I., Decker, S., Zaharevitz, D., Rubinstein, L. V., Venditti, J. M., Schepartz, S., et al. (2001). Relationships between drug activity in NCI preclinical in vitro and in vivo models and early clinical trials. British Journal of Cancer, 84(10), 1424–1431. doi:10.1054/bjoc.2001.1796.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Ellis, L. M., & Fidler, I. J. (2010). Finding the tumor copycat. Therapy fails, patients don’t. Nature Medicine, 16(9), 974–975. doi:10.1038/nm0910-974.

    Article  CAS  PubMed  Google Scholar 

  97. Hampton, O. A., Den Hollander, P., Miller, C. A., Delgado, D. A., Li, J., Coarfa, C., et al. (2009). A sequence-level map of chromosomal breakpoints in the MCF-7 breast cancer cell line yields insights into the evolution of a cancer genome. Genome Research, 19(2), 167–177. doi:10.1101/gr.080259.108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Nugoli, M., Chuchana, P., Vendrell, J., Orsetti, B., Ursule, L., Nguyen, C., et al. (2003). Genetic variability in MCF-7 sublines: evidence of rapid genomic and RNA expression profile modifications. BMC Cancer, 3, 13. doi:10.1186/1471-2407-3-13.

    Article  PubMed  PubMed Central  Google Scholar 

  99. du Manoir, S., Orsetti, B., Bras-Goncalves, R., Nguyen, T. T., Lasorsa, L., Boissiere, F., et al. (2014). Breast tumor PDXs are genetically plastic and correspond to a subset of aggressive cancers prone to relapse. Molecular Oncology, 8(2), 431–443. doi:10.1016/j.molonc.2013.11.010.

    Article  PubMed  CAS  Google Scholar 

  100. Prat, A., & Perou, C. M. (2011). Deconstructing the molecular portraits of breast cancer. Molecular Oncology, 5(1), 5–23. doi:10.1016/j.molonc.2010.11.003.

    Article  CAS  PubMed  Google Scholar 

  101. Petrillo, L. A., Wolf, D. M., Kapoun, A. M., Wang, N. J., Barczak, A., Xiao, Y., et al. (2012). Xenografts faithfully recapitulate breast cancer-specific gene expression patterns of parent primary breast tumors. Breast Cancer Research and Treatment, 135(3), 913–922. doi:10.1007/s10549-012-2226-y.

    Article  CAS  PubMed  Google Scholar 

  102. Giuliano, M., Herrera, S., Christiny, P., Shaw, C., Creighton, C. J., Mitchell, T., et al. (2015). Circulating and disseminated tumor cells from breast cancer patient-derived xenograft-bearing mice as a novel model to study metastasis. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Breast Cancer Research, 17(3). doi:10.1186/s13058-014-0508-5.

  103. Powell, E., Shao, J., Yuan, Y., Chen, H. C., Cai, S., Echeverria, G. V., et al. (2016). p53 deficiency linked to B cell translocation gene 2 (BTG2) loss enhances metastatic potential by promoting tumor growth in primary and metastatic sites in patient-derived xenograft (PDX) models of triple-negative breast cancer. Breast Cancer Research, 18(1), 13. doi:10.1186/s13058-016-0673-9.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Flanagan, S. P. (1966). ‘Nude’, a new hairless gene with pleiotropic effects in the mouse. Genetical Research, 8(3), 295–309.

    Article  CAS  PubMed  Google Scholar 

  105. Kaushik, A., Kelsoe, G., & Jaton, J. C. (1995). The nude mutation results in impaired primary antibody repertoire. European Journal of Immunology, 25(2), 631–634. doi:10.1002/eji.1830250249.

    Article  CAS  PubMed  Google Scholar 

  106. Wortis, H. H., Nehlsen, S., & Owen, J. J. (1971). Abnormal development of the thymus in “nude” mice. The Journal of Experimental Medicine, 134(3 Pt 1), 681–692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kaestner, K. H., Knochel, W., & Martinez, D. E. (2000). Unified nomenclature for the winged helix/forkhead transcription factors. Genes & Development, 14(2), 142–146.

    CAS  Google Scholar 

  108. Nehls, M., Pfeifer, D., Schorpp, M., Hedrich, H., & Boehm, T. (1994). New member of the winged-helix protein family disrupted in mouse and rat nude mutations. Nature, 372(6501), 103–107. doi:10.1038/372103a0.

    Article  CAS  PubMed  Google Scholar 

  109. Osborne, C. K., Hobbs, K., & Clark, G. M. (1985). Effect of estrogens and antiestrogens on growth of human breast cancer cells in athymic nude mice. Cancer Research, 45(2), 584–590.

    CAS  PubMed  Google Scholar 

  110. Seibert, K., Shafie, S. M., Triche, T. J., Whang-Peng, J. J., O’Brien, S. J., Toney, J. H., et al. (1983). Clonal variation of MCF-7 breast cancer cells in vitro and in athymic nude mice. Cancer Research, 43(5), 2223–2239.

    CAS  PubMed  Google Scholar 

  111. Popnikolov, N. K., Yang, J., Guzman, R. C., Swanson, S. M., Thordarson, G., Collins, G., et al. (1995). In vivo growth stimulation of collagen gel embedded normal human and mouse primary mammary epithelial cells. Journal of Cellular Physiology, 163(1), 51–60. doi:10.1002/jcp.1041630107.

    Article  CAS  PubMed  Google Scholar 

  112. Soule, H. D., & McGrath, C. M. (1980). Estrogen responsive proliferation of clonal human breast carcinoma cells in athymic mice. Cancer Letters, 10(2), 177–189.

    Article  CAS  PubMed  Google Scholar 

  113. McAuliffe, P. F., Evans, K. W., Akcakanat, A., Chen, K., Zheng, X., Zhao, H., et al. (2016). Correction: ability to generate patient-derived breast cancer xenografts is enhanced in chemoresistant disease and predicts poor patient outcomes. [published erratum]. PloS One, 11(3), e0151121. doi:10.1371/journal.pone.0151121.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. McAuliffe, P. F., Evans, K. W., Akcakanat, A., Chen, K., Zheng, X., Zhao, H., et al. (2015). Ability to generate patient-derived breast cancer xenografts is enhanced in chemoresistant disease and predicts poor patient outcomes. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. PloS One, 10(9), e0136851. doi:10.1371/journal.pone.0136851.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  115. Mombaerts, P., Iacomini, J., Johnson, R. S., Herrup, K., Tonegawa, S., & Papaioannou, V. E. (1992). RAG-1-deficient mice have no mature B and T lymphocytes. Cell, 68(5), 869–877.

    Article  CAS  PubMed  Google Scholar 

  116. Wunderlich, M., Mizukawa, B., Chou, F. S., Sexton, C., Shrestha, M., Saunthararajah, Y., et al. (2013). AML cells are differentially sensitive to chemotherapy treatment in a human xenograft model. [Research support, N.I.H., extramural research support, U.S. Gov’t, non-P.H.S.]. Blood, 121(12), e90–e97. doi:10.1182/blood-2012-10-464677.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bosma, G. C., Fried, M., Custer, R. P., Carroll, A., Gibson, D. M., & Bosma, M. J. (1988). Evidence of functional lymphocytes in some (leaky) scid mice. The Journal of Experimental Medicine, 167(3), 1016–1033.

    Article  CAS  PubMed  Google Scholar 

  118. Bosma, G. C., Custer, R. P., & Bosma, M. J. (1983). A severe combined immunodeficiency mutation in the mouse. Nature, 301(5900), 527–530.

    Article  CAS  PubMed  Google Scholar 

  119. Blunt, T., Finnie, N. J., Taccioli, G. E., Smith, G. C., Demengeot, J., Gottlieb, T. M., et al. (1995). Defective DNA-dependent protein kinase activity is linked to V(D)J recombination and DNA repair defects associated with the murine scid mutation. Cell, 80(5), 813–823.

    Article  CAS  PubMed  Google Scholar 

  120. Nonoyama, S., Smith, F. O., Bernstein, I. D., & Ochs, H. D. (1993). Strain-dependent leakiness of mice with severe combined immune deficiency. Journal of Immunology, 150(9), 3817–3824.

    CAS  Google Scholar 

  121. Custer, R. P., Bosma, G. C., & Bosma, M. J. (1985). Severe combined immunodeficiency (SCID) in the mouse. Pathology, reconstitution, neoplasms. [Research support, non-U.S. Gov’t research support, U.S. Gov’t, P.H.S.]. The American Journal of Pathology, 120(3), 464–477.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Christianson, S. W., Greiner, D. L., Schweitzer, I. B., Gott, B., Beamer, G. L., Schweitzer, P. A., et al. (1996). Role of natural killer cells on engraftment of human lymphoid cells and on metastasis of human T-lymphoblastoid leukemia cells in C57BL/6J-scid mice and in C57BL/6J-scid bg mice. Cellular Immunology, 171(2), 186–199. doi:10.1006/cimm.1996.0193.

    Article  CAS  PubMed  Google Scholar 

  123. Greiner, D. L., Shultz, L. D., Yates, J., Appel, M. C., Perdrizet, G., Hesselton, R. M., et al. (1995). Improved engraftment of human spleen cells in NOD/LtSz-scid/scid mice as compared with C.B-17-scid/scid mice. The American Journal of Pathology, 146(4), 888–902.

    CAS  PubMed  PubMed Central  Google Scholar 

  124. Hudson, W. A., Li, Q., Le, C., & Kersey, J. H. (1998). Xenotransplantation of human lymphoid malignancies is optimized in mice with multiple immunologic defects. Leukemia, 12(12), 2029–2033.

    Article  CAS  PubMed  Google Scholar 

  125. Dewan, M. Z., Terunuma, H., Ahmed, S., Ohba, K., Takada, M., Tanaka, Y., et al. (2005). Natural killer cells in breast cancer cell growth and metastasis in SCID mice. Biomedicine & Pharmacotherapy, 59(Suppl 2), S375–S379.

    Article  CAS  Google Scholar 

  126. Roder, J., & Duwe, A. (1979). The beige mutation in the mouse selectively impairs natural killer cell function. Nature, 278(5703), 451–453.

    Article  CAS  PubMed  Google Scholar 

  127. Xia, Z., Taylor, P. R., Locklin, R. M., Gordon, S., Cui, Z., & Triffitt, J. T. (2006). Innate immune response to human bone marrow fibroblastic cell implantation in CB17 scid/beige mice. Journal of Cellular Biochemistry, 98(4), 966–980.

    Article  CAS  PubMed  Google Scholar 

  128. Gouon-Evans, V., Lin, E. Y., & Pollard, J. W. (2002). Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development. Breast Cancer Research, 4(4), 155–164.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Gouon-Evans, V., Rothenberg, M. E., & Pollard, J. W. (2000). Postnatal mammary gland development requires macrophages and eosinophils. Development, 127(11), 2269–2282.

    CAS  PubMed  Google Scholar 

  130. Yang, L., Huang, J., Ren, X., Gorska, A. E., Chytil, A., Aakre, M., et al. (2008). Abrogation of TGF beta signaling in mammary carcinomas recruits Gr-1+CD11b+ myeloid cells that promote metastasis. Cancer Cell, 13(1), 23–35. doi:10.1016/j.ccr.2007.12.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Iyer, V., Klebba, I., McCready, J., Arendt, L. M., Betancur-Boissel, M., Wu, M. F., et al. (2012). Estrogen promotes ER-negative tumor growth and angiogenesis through mobilization of bone marrow-derived monocytes. Cancer Research, 72(11), 2705–2713. doi:10.1158/0008-5472.CAN-11-3287.

    Article  CAS  PubMed  Google Scholar 

  132. Shultz, L. D., Schweitzer, P. A., Christianson, S. W., Gott, B., Schweitzer, I. B., Tennent, B., et al. (1995). Multiple defects in innate and adaptive immunologic function in NOD/LtSz-scid mice. Journal of Immunology, 154(1), 180–191.

    CAS  Google Scholar 

  133. Pflumio, F., Izac, B., Katz, A., Shultz, L. D., Vainchenker, W., & Coulombel, L. (1996). Phenotype and function of human hematopoietic cells engrafting immune-deficient CB17-severe combined immunodeficiency mice and nonobese diabetic-severe combined immunodeficiency mice after transplantation of human cord blood mononuclear cells. Blood, 88(10), 3731–3740.

    CAS  PubMed  Google Scholar 

  134. Cashman, J. D., Lapidot, T., Wang, J. C., Doedens, M., Shultz, L. D., Lansdorp, P., et al. (1997). Kinetic evidence of the regeneration of multilineage hematopoiesis from primitive cells in normal human bone marrow transplanted into immunodeficient mice. Blood, 89(12), 4307–4316.

    CAS  PubMed  Google Scholar 

  135. Sikora, M. J., Cooper, K. L., Bahreini, A., Luthra, S., Wang, G., Chandran, U. R., et al. (2014). Invasive lobular carcinoma cell lines are characterized by unique estrogen-mediated gene expression patterns and altered tamoxifen response. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Cancer Research, 74(5), 1463–1474. doi:10.1158/0008-5472.CAN-13-2779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Eyre, R., Alferez, D. G., & Clarke, R. B. (2016). Journal of Mammary Gland Biology and Neoplasia, (in press).

  137. Shultz, L. D., Lyons, B. L., Burzenski, L. M., Gott, B., Chen, X., Chaleff, S., et al. (2005). Human lymphoid and myeloid cell development in NOD/LtSz-scid IL2R gamma null mice engrafted with mobilized human hemopoietic stem cells. Journal of Immunology, 174(10), 6477–6489.

    Article  CAS  Google Scholar 

  138. Ito, M., Hiramatsu, H., Kobayashi, K., Suzue, K., Kawahata, M., Hioki, K., et al. (2002). NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood, 100(9), 3175–3182. doi:10.1182/blood-2001-12-0207.

    Article  CAS  PubMed  Google Scholar 

  139. Oakes, S. R., Vaillant, F., Lim, E., Lee, L., Breslin, K., Feleppa, F., et al. (2012). Sensitization of BCL-2-expressing breast tumors to chemotherapy by the BH3 mimetic ABT-737. [Research support, non-U.S. Gov’t]. Proceedings of the National Academy of Sciences of the United States of America, 109(8), 2766–2771. doi:10.1073/pnas.1104778108.

    Article  CAS  PubMed  Google Scholar 

  140. Nolan, E., Vaillant, F., Branstetter, D., Pal, B., Giner, G., Whitehead, L., et al. (2016). RANK ligand as a potential target for breast cancer prevention in BRCA1-mutation carriers. Nature Medicine, 22(8), 933–939. doi:10.1038/nm.4118.

    Article  CAS  PubMed  Google Scholar 

  141. Richard, E., Grellety, T., Velasco, V., MacGrogan, G., Bonnefoi, H., & Iggo, R. (2016). The mammary ducts create a favourable microenvironment for xenografting of luminal and molecular apocrine breast tumours. The Journal of Pathology. doi:10.1002/path.4772.

    PubMed  Google Scholar 

  142. McDermott, S. P., Eppert, K., Lechman, E. R., Doedens, M., & Dick, J. E. (2010). Comparison of human cord blood engraftment between immunocompromised mouse strains. [Comparative study research support, non-U.S. Gov’t]. Blood, 116(2), 193–200. doi:10.1182/blood-2010-02-271841.

    Article  CAS  PubMed  Google Scholar 

  143. Bondarenko, G., Ugolkov, A., Rohan, S., Kulesza, P., Dubrovskyi, O., Gursel, D., et al. (2015). Patient-derived tumor xenografts are susceptible to formation of human lymphocytic tumors. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Neoplasia, 17(9), 735–741. doi:10.1016/j.neo.2015.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Wetterauer, C., Vlajnic, T., Schuler, J., Gsponer, J. R., Thalmann, G. N., Cecchini, M., et al. (2015). Early development of human lymphomas in a prostate cancer xenograft program using triple knock-out immunocompromised mice. [Research support, non-U.S. Gov’t]. The Prostate, 75(6), 585–592. doi:10.1002/pros.22939.

    Article  PubMed  Google Scholar 

  145. Moon, H. G., Oh, K., Lee, J., Lee, M., Kim, J. Y., Yoo, T. K., et al. (2015). Prognostic and functional importance of the engraftment-associated genes in the patient-derived xenograft models of triple-negative breast cancers. [Research support, non-U.S. Gov’t]. Breast Cancer Research and Treatment, 154(1), 13–22. doi:10.1007/s10549-015-3585-y.

    Article  PubMed  Google Scholar 

  146. Gullino, P. M. (1977). Considerations on the preneoplastic lesions of the mammary gland. The American Journal of Pathology, 89(2), 413–430.

    CAS  PubMed  PubMed Central  Google Scholar 

  147. Brem, S. S., Jensen, H. M., & Gullino, P. M. (1978). Angiogenesis as a marker of preneoplastic lesions of the human breast. Cancer, 41, 239–244.

    Article  CAS  PubMed  Google Scholar 

  148. Bogden, A. E., Haskell, P. M., LePage, D. J., Kelton, D. E., Cobb, W. R., & Esber, H. J. (1979). Growth of human tumor xenografts implanted under the renal capsule of normal immunocompetent mice. Experimental Cell Biology, 47(4), 281–293.

    CAS  PubMed  Google Scholar 

  149. Bogden, A. E., Kelton, D. E., Cobb, W. B., & Esber, H. J.. 1978. A rapid screening method for testing chemotherapeutic agents against human tumor xenografts. In Houchens, & Ovejera (Eds.), Symposium on the use of athymic (nude) mice in cancer research, (pp. 231). New York.

  150. Aamdal, S., Fodstad, O., Nesland, J. M., & Pihl, A. (1985). Characteristics of human tumour xenografts transplanted under the renal capsule of immunocompetent mice. British Journal of Cancer, 51(3), 347–356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Eirew, P., Stingl, J., Raouf, A., Turashvili, G., Aparicio, S., Emerman, J. T., et al. (2008). A method for quantifying normal human mammary epithelial stem cells with in vivo regenerative ability. Nature Medicine, 14(12), 1384–1389. doi:10.1038/nm.1791.

    Article  CAS  PubMed  Google Scholar 

  152. DeOme, K. B., Faulkin, L. J. J., & Bern, H. (1958). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Research, 19, 515–520.

    Google Scholar 

  153. Behbod, F., Kittrell, F. S., LaMarca, H., Edwards, D., Kerbawy, S., Heestand, J. C., et al. (2009). An intraductal human-in-mouse transplantation model mimics the subtypes of ductal carcinoma in situ. Breast Cancer Research, 11(5), R66. doi:10.1186/bcr2358.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  154. Sflomos, G., Dormoy, V., Metsalu, T., Jeitziner, R., Battista, L., Scabia, V., et al. (2016). A preclinical model for ERalpha-positive breast cancer points to the epithelial microenvironment as determinant of luminal phenotype and hormone response. [Research support, non-U.S. Gov’t]. Cancer Cell, 29(3), 407–422. doi:10.1016/j.ccell.2016.02.002.

    Article  CAS  PubMed  Google Scholar 

  155. Kang, Y., Siegel, P. M., Shu, W., Drobnjak, M., Kakonen, S. M., Cordon-Cardo, C., et al. (2003). A multigenic program mediating breast cancer metastasis to bone. Cancer Cell, 3(6), 537–549.

    Article  CAS  PubMed  Google Scholar 

  156. Palmieri, D., Smith, Q. R., Lockman, P. R., Bronder, J., Gril, B., Chambers, A. F., et al. (2006). Brain metastases of breast cancer. Breast Disease, 26, 139–147.

    Article  CAS  PubMed  Google Scholar 

  157. Bos, P. D., Zhang, X. H., Nadal, C., Shu, W., Gomis, R. R., Nguyen, D. X., et al. (2009). Genes that mediate breast cancer metastasis to the brain. Nature, 459(7249), 1005–1009. doi:10.1038/nature08021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Minn, A. J., Gupta, G. P., Siegel, P. M., Bos, P. D., Shu, W., Giri, D. D., et al. (2005). Genes that mediate breast cancer metastasis to lung. Nature, 436(7050), 518–524. doi:10.1038/nature03799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Murphy, P., Alexander, P., Senior, P. V., Fleming, J., Kirkham, N., & Taylor, I. (1988). Mechanisms of organ selective tumour growth by bloodborne cancer cells. British Journal of Cancer, 57(1), 19–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Yi, B., Williams, P. J., Niewolna, M., Wang, Y., & Yoneda, T. (2002). Tumor-derived platelet-derived growth factor-BB plays a critical role in osteosclerotic bone metastasis in an animal model of human breast cancer. Cancer Research, 62(3), 917–923.

    CAS  PubMed  Google Scholar 

  161. Lam, P., Yang, W., Amemiya, Y., Kahn, H., Yee, A., Holloway, C., et al. (2009). A human bone NOD/SCID mouse model to distinguish metastatic potential in primary breast cancers. Cancer Biology & Therapy, 8(11), 1010–1017.

    Article  Google Scholar 

  162. Faulkin Jr., L. J., & Deome, K. B. (1960). Regulation of growth and spacing of gland elements in the mammary fat pad of the C3H mouse. Journal of the National Cancer Institute, 24, 953–969.

    PubMed  Google Scholar 

  163. Deome, K. B., Faulkin Jr., L. J., Bern, H. A., & Blair, P. B. (1959). Development of mammary tumors from hyperplastic alveolar nodules transplanted into gland-free mammary fat pads of female C3H mice. Cancer Research, 19(5), 515–520.

    CAS  PubMed  Google Scholar 

  164. Bailey, M. J., Gazet, J. C., & Peckham, M. J. (1980). Human breast-cancer xenografts in immune-suppressed mice. British Journal of Cancer, 42(4), 524–529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Levin-Allerhand, J. A., Sokol, K., & Smith, J. D. (2003). Safe and effective method for chronic 17beta-estradiol administration to mice. [Comparative StudyResearch support, non-U.S. Gov’t]. (2016). Contemporary topics in laboratory animal science / American Association for Laboratory Animal Science, 42(6), 33–35.

    CAS  Google Scholar 

  166. Welsch, C. W., Swim, E. L., McManus, M. J., White, A. C., & McGrath, C. M. (1981). Estrogen induced growth of human breast cancer cells (MCF-7) in athymic nude mice is enhanced by secretions from a transplantable pituitary tumor. [Research support, non-U.S. Gov’tResearch support, U.S. Gov’t, P.H.S.]. Cancer Letters, 14(3), 309–316.

    Article  CAS  PubMed  Google Scholar 

  167. Cottu, P., Marangoni, E., Assayag, F., de Cremoux, P., Vincent-Salomon, A., Guyader, C., et al. (2012). Modeling of response to endocrine therapy in a panel of human luminal breast cancer xenografts. [Research support, non-U.S. Gov’t]. Breast Cancer Research and Treatment, 133(2), 595–606. doi:10.1007/s10549-011-1815-5.

    Article  CAS  PubMed  Google Scholar 

  168. Hatem, R., El Botty, R., Chateau-Joubert, S., Servely, J. L., Labiod, D., de Plater, L., et al. (2016). Targeting mTOR pathway inhibits tumor growth in different molecular subtypes of triple-negative breast cancers. Oncotarget. doi:10.18632/oncotarget.10195.

    PubMed  Google Scholar 

  169. Gupta, P. B., & Kuperwasser, C. (2006). Contributions of estrogen to ER-negative breast tumor growth. The Journal of Steroid Biochemistry and Molecular Biology, 102(1–5), 71–78. doi:10.1016/j.jsbmb.2006.09.025.

    Article  CAS  PubMed  Google Scholar 

  170. Gupta, P. B., Proia, D., Cingoz, O., Weremowicz, J., Naber, S. P., Weinberg, R. A., et al. (2007). Systemic stromal effects of estrogen promote the growth of estrogen receptor-negative cancers. Cancer Research, 67(5), 2062–2071. doi:10.1158/0008-5472.CAN-06-3895.

    Article  CAS  PubMed  Google Scholar 

  171. Pequeux, C., Raymond-Letron, I., Blacher, S., Boudou, F., Adlanmerini, M., Fouque, M. J., et al. (2012). Stromal estrogen receptor-alpha promotes tumor growth by normalizing an increased angiogenesis. [Research support, non-U.S. Gov’t]. Cancer Research, 72(12), 3010–3019. doi:10.1158/0008-5472.CAN-11-3768.

    Article  CAS  PubMed  Google Scholar 

  172. Pece, S., Tosoni, D., Confalonieri, S., Mazzarol, G., Vecchi, M., Ronzoni, S., et al. (2010). Biological and molecular heterogeneity of breast cancers correlates with their cancer stem cell content. [Research support, non-U.S. Gov’t]. Cell, 140(1), 62–73. doi:10.1016/j.cell.2009.12.007.

    Article  CAS  PubMed  Google Scholar 

  173. Charafe-Jauffret, E., Ginestier, C., Bertucci, F., Cabaud, O., Wicinski, J., Finetti, P., et al. (2013). ALDH1-positive cancer stem cells predict engraftment of primary breast tumors and are governed by a common stem cell program. [Research support, non-U.S. Gov’t]. Cancer Research, 73(24), 7290–7300. doi:10.1158/0008-5472.CAN-12-4704.

    Article  CAS  PubMed  Google Scholar 

  174. Rong, S., Oskarsson, M., Faletto, D., Tsarfaty, I., Resau, J. H., Nakamura, T., et al. (1993). Tumorigenesis induced by coexpression of human hepatocyte growth factor and the human met protooncogene leads to high levels of expression of the ligand and receptor. Cell Growth & Differentiation, 4(7), 563–569.

    CAS  Google Scholar 

  175. Utama, F. E., LeBaron, M. J., Neilson, L. M., Sultan, A. S., Parlow, A. F., Wagner, K. U., et al. (2006). Human prolactin receptors are insensitive to mouse prolactin: implications for xenotransplant modeling of human breast cancer in mice. The Journal of Endocrinology, 188(3), 589–601. doi:10.1677/joe.1.06560.

    Article  CAS  PubMed  Google Scholar 

  176. Rong, S., Bodescot, M., Blair, D., Dunn, J., Nakamura, T., Mizuno, K., et al. (1992). Tumorigenicity of the met proto-oncogene and the gene for hepatocyte growth factor. Molecular and Cellular Biology, 12(11), 5152–5158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Kaur, H., Mao, S., Shah, S., Gorski, D. H., Krawetz, S. A., Sloane, B. F., et al. (2013). Next-generation sequencing: a powerful tool for the discovery of molecular markers in breast ductal carcinoma in situ. Expert Review of Molecular Diagnostics, 13(2), 151–165. doi:10.1586/erm.13.4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Miller, F. R. (2000). Xenograft models of premalignant breast disease. Journal of Mammary Gland Biology and Neoplasia, 5(4), 379–391.

    Article  CAS  PubMed  Google Scholar 

  179. Holland, P. A., Knox, W. F., Potten, C. S., Howell, A., Anderson, E., Baildam, A. D., et al. (1997). Assessment of hormone dependence of comedo ductal carcinoma in situ of the breast. Journal of the National Cancer Institute, 89(14), 1059–1065.

    Article  CAS  PubMed  Google Scholar 

  180. Warnberg, F., White, D., Anderson, E., Knox, F., Clarke, R. B., Morris, J., et al. (2006). Effect of a farnesyl transferase inhibitor (R115777) on ductal carcinoma in situ of the breast in a human xenograft model and on breast and ovarian cancer cell growth in vitro and in vivo. Breast Cancer Research, 8(2), R21. doi:10.1186/bcr1395.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  181. Miller, F. R., Soule, H. D., Tait, L., Pauley, R. J., Wolman, S. R., Dawson, P. J., et al. (1993). Xenograft model of progressive human proliferative breast disease. Journal of the National Cancer Institute, 85(21), 1725–1732.

    Article  CAS  PubMed  Google Scholar 

  182. Dawson, P. J., Wolman, S. R., Tait, L., Heppner, G. H., & Miller, F. R. (1996). MCF10AT: a model for the evolution of cancer from proliferative breast disease. The American Journal of Pathology, 148(1), 313–319.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Hu, M., Yao, J., Carroll, D. K., Weremowicz, S., Chen, H., Carrasco, D., et al. (2008). Regulation of in situ to invasive breast carcinoma transition. Cancer Cell, 13(5), 394–406. doi:10.1016/j.ccr.2008.03.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Forozan, F., Veldman, R., Ammerman, C. A., Parsa, N. Z., Kallioniemi, A., Kallioniemi, O. P., et al. (1999). Molecular cytogenetic analysis of 11 new breast cancer cell lines. British Journal of Cancer, 81(8), 1328–1334. doi:10.1038/sj.bjc.6695007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Gupta, P. B., & Kuperwasser, C. (2004). Disease models of breast cancer. [Review]. Drug Discovery Today: Disease Models, 1(1), 9–16.

    CAS  Google Scholar 

  186. Proia, D. A., & Kuperwasser, C. (2006). Reconstruction of human mammary tissues in a mouse model. Nature Protocols, 1(1), 206–214. doi:10.1038/nprot.2006.31.

    Article  CAS  PubMed  Google Scholar 

  187. Klopp, A. H., Gupta, A., Spaeth, E., Andreeff, M., & Marini 3rd, F. (2011). Concise review: dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? [Research support, N.I.H., extramural research support, non-U.S. Gov’tReview]. Stem Cells, 29(1), 11–19. doi:10.1002/stem.559.

    Article  CAS  PubMed  Google Scholar 

  188. Klopp, A. H., Lacerda, L., Gupta, A., Debeb, B. G., Solley, T., Li, L., et al. (2010). Mesenchymal stem cells promote mammosphere formation and decrease E-cadherin in normal and malignant breast cells. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. PloS One, 5(8), e12180. doi:10.1371/journal.pone.0012180.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  189. Karnoub, A. E., Dash, A. B., Vo, A. P., Sullivan, A., Brooks, M. W., Bell, G. W., et al. (2007). Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature, 449(7162), 557–563. doi:10.1038/nature06188.

    Article  CAS  PubMed  Google Scholar 

  190. Liu, S., Ginestier, C., Ou, S. J., Clouthier, S. G., Patel, S. H., Monville, F., et al. (2011). Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Cancer Research, 71(2), 614–624. doi:10.1158/0008-5472.CAN-10-0538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Smyth, M. J., Dunn, G. P., & Schreiber, R. D. (2006). Cancer immunosurveillance and immunoediting: the roles of immunity in suppressing tumor development and shaping tumor immunogenicity. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Advances in Immunology, 90, 1–50. doi:10.1016/S0065-2776(06)90001-7.

    Article  CAS  PubMed  Google Scholar 

  192. Condeelis, J., & Pollard, J. W. (2006). Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. Cell, 124(2), 263–266. doi:10.1016/j.cell.2006.01.007.

    Article  CAS  PubMed  Google Scholar 

  193. DeNardo, D. G., Andreu, P., & Coussens, L. M. (2010). Interactions between lymphocytes and myeloid cells regulate pro- versus anti-tumor immunity. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S. Review]. Cancer Metastasis Reviews, 29(2), 309–316. doi:10.1007/s10555-010-9223-6.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Mantovani, A., & Sica, A. (2010). Macrophages, innate immunity and cancer: balance, tolerance, and diversity. [Review]. Current Opinion in Immunology, 22(2), 231–237. doi:10.1016/j.coi.2010.01.009.

    Article  CAS  PubMed  Google Scholar 

  195. Wyckoff, J. B., Wang, Y., Lin, E. Y., Li, J. F., Goswami, S., Stanley, E. R., et al. (2007). Direct visualization of macrophage-assisted tumor cell intravasation in mammary tumors. [Research support, N.I.H., extramural]. Cancer Research, 67(6), 2649–2656. doi:10.1158/0008-5472.CAN-06-1823.

    Article  CAS  PubMed  Google Scholar 

  196. Mantovani, A., Sica, A., Allavena, P., Garlanda, C., & Locati, M. (2009). Tumor-associated macrophages and the related myeloid-derived suppressor cells as a paradigm of the diversity of macrophage activation. [Research support, non-U.S. Gov’t review]. Human Immunology, 70(5), 325–330, doi: 10.1016/j.humimm.2009.02.008.

  197. Knutson, K. L., Disis, M. L., & Salazar, L. G. (2007). CD4 regulatory T cells in human cancer pathogenesis. [Research support, N.I.H., extramural review]. Cancer Immunology, Immunotherapy, 56(3), 271–285. doi:10.1007/s00262-006-0194-y.

    Article  PubMed  Google Scholar 

  198. Hughes, P. E., Caenepeel, S., & Wu, L. C. (2016). Targeted therapy and checkpoint immunotherapy combinations for the treatment of cancer. [Review]. Trends in Immunology, 37(7), 462–476. doi:10.1016/j.it.2016.04.010.

    Article  CAS  PubMed  Google Scholar 

  199. Postow, M. A., Callahan, M. K., & Wolchok, J. D. (2015). Immune checkpoint blockade in cancer therapy. [Review]. Journal of Clinical Oncology, 33(17), 1974–1982. doi:10.1200/JCO.2014.59.4358.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Rakhra, K., Bachireddy, P., Zabuawala, T., Zeiser, R., Xu, L., Kopelman, A., et al. (2010). CD4(+) T cells contribute to the remodeling of the microenvironment required for sustained tumor regression upon oncogene inactivation. [Comment research support, N.I.H., extramural research support, non-U.S. Gov’t]. Cancer Cell, 18(5), 485–498. doi:10.1016/j.ccr.2010.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Mosier, D. E., Gulizia, R. J., Baird, S. M., & Wilson, D. B. (1988). Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature, 335(6187), 256–259. doi:10.1038/335256a0.

    Article  CAS  PubMed  Google Scholar 

  202. Wege, A. K., Ernst, W., Eckl, J., Frankenberger, B., Vollmann-Zwerenz, A., Mannel, D. N., et al. (2011). Humanized tumor mice--a new model to study and manipulate the immune response in advanced cancer therapy. [Research support, non-U.S. Gov’t]. International Journal of Cancer, 129(9), 2194–2206. doi:10.1002/ijc.26159.

    Article  CAS  PubMed  Google Scholar 

  203. Sanmamed, M. F., Chester, C., Melero, I., & Kohrt, H. (2016). Defining the optimal murine models to investigate immune checkpoint blockers and their combination with other immunotherapies. [Review]. Annals of Oncology, 27(7), 1190–1198. doi:10.1093/annonc/mdw041.

    Article  CAS  PubMed  Google Scholar 

  204. Holzapfel, B. M., Wagner, F., Thibaudeau, L., Levesque, J. P., & Hutmacher, D. W. (2015). Concise review: humanized models of tumor immunology in the twenty-first century: convergence of cancer research and tissue engineering. [Review]. Stem Cells, 33(6), 1696–1704. doi:10.1002/stem.1978.

    Article  CAS  PubMed  Google Scholar 

  205. Zhou, Q., Facciponte, J., Jin, M., Shen, Q., & Lin, Q. (2014). Humanized NOD-SCID IL2rg−/− mice as a preclinical model for cancer research and its potential use for individualized cancer therapies. [Review]. Cancer Letters, 344(1), 13–19. doi:10.1016/j.canlet.2013.10.015.

    Article  CAS  PubMed  Google Scholar 

  206. Brehm, M. A., Shultz, L. D., Luban, J., & Greiner, D. L. (2013). Overcoming current limitations in humanized mouse research. [Research support, N.I.H., extramural research support, non-U.S. Gov’t review]. The Journal of Infectious Diseases, 208(Suppl 2), S125–S130. doi:10.1093/infdis/jit319.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Vargo-Gogola, T. (2010). Putting the brakes on breast cancer: therapeutic opportunities to bring cancer stem cells and the tumor microenvironment to a screeching halt. [Editorial introductory]. Current Drug Targets, 11(9), 1041–1042.

    Article  CAS  PubMed  Google Scholar 

  208. Shumway, N. M., Ibrahim, N., Ponniah, S., Peoples, G. E., & Murray, J. L. (2009). Therapeutic breast cancer vaccines: a new strategy for early-stage disease. [Review]. BioDrugs, 23(5), 277–287. doi:10.2165/11313490-000000000-00000.

    Article  CAS  PubMed  Google Scholar 

  209. DeNardo, D. G., Brennan, D. J., Rexhepaj, E., Ruffell, B., Shiao, S. L., Madden, S. F., et al. (2011). Leukocyte complexity predicts breast cancer survival and functionally regulates response to chemotherapy. [Research support, N.I.H., extramural research support, non-U.S. Gov’t research support, U.S. Gov’t, non-P.H.S.]. Cancer Discovery, 1(1), 54–67. doi:10.1158/2159-8274.CD-10-0028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  210. Bedognetti, D., Maccalli, C., Bader, S. B., Marincola, F. M., & Seliger, B. (2016). Checkpoint inhibitors and their application in breast cancer. [Review]. Breast Care (Basel), 11(2), 108–115. doi:10.1159/000445335.

    Article  Google Scholar 

  211. Garcia, S., & Freitas, A. A. (2012). Humanized mice: current states and perspectives. [Review]. Immunology Letters, 146(1–2), 1–7. doi:10.1016/j.imlet.2012.03.009.

    Article  CAS  PubMed  Google Scholar 

  212. Rongvaux, A., Willinger, T., Martinek, J., Strowig, T., Gearty, S. V., Teichmann, L. L., et al. (2014). Development and function of human innate immune cells in a humanized mouse model. [Research support, N.I.H., extramural research support, non-U.S. Gov’t]. Nature Biotechnology, 32(4), 364–372. doi:10.1038/nbt.2858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Bertotti, A., Migliardi, G., Galimi, F., Sassi, F., Torti, D., Isella, C., et al. (2011). A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. [Research support, non-U.S. Gov’t]. Cancer Discovery, 1(6), 508–523. doi:10.1158/2159-8290.CD-11-0109.

    Article  CAS  PubMed  Google Scholar 

  214. Gao, H., Korn, J. M., Ferretti, S., Monahan, J. E., Wang, Y., Singh, M., et al. (2015). High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nature Medicine, 21(11), 1318–1325, doi:10.1038/nm.3954.

Download references

Acknowledgements

Samuel Aparicio—Supported by the BC Cancer Foundation, Canadian Breast Cancer Foundation, CIHR, Canadian Foundation for Innovation, Stand Up to Cancer Canada, Canadian Cancer Research Institute, and Terry Fox Research Institute

Fariba Behbod—Supported by R01-NIH/NCI-R01CA172764, NIH/NCI-R21CA187890, AACR-Breast Cancer Research Foundation-2014 Translational Breast Cancer Research, and NIH/NCI-R21CA185460

Cathrin Brisken—The research leading to these results has received support from the Swiss Cancer League, the SNF, and the Innovative Medicines Initiative Joint Undertaking (grant agreement no. 115188) for the PREDECT consortium (www.predect.eu) resources composed of financial contribution from EU-FP7 and EFPIA companies in kind contribution. The Web address of the Innovative Medicines Initiative is http://www.imi.europa.eu/.

Carol J. Bult—This work was supported in part by the Maine Cancer Foundation, The Jackson Laboratory Director’s Innovation Fund, and JAX Cancer Center grant P30 CA034196.

Matthew Ellis—Dr. Ellis is a McNair Medical Institute Scholar and a CPRIT Established Investigator (CPRIT RR140033).

Robert Clarke and Denis Alferez—This work was funded by Cancer Research UK and Breast Cancer Now. We would like to thank all patients who donated tissue to this study and the Manchester Cancer Research Centre Biobank for consenting patients and collecting tissue.

Eva Gonzalez-Suarez—This work was supported in part by grants to Eva González Suárez by the Spanish Ministry of Economy and Competitivity MINECO and from the ISCIII (SAF2008-01975, SAF2011-22893, SAF2014-55997), PIE13/00022, co-funded by FEDER funds/European Regional Development Fund (ERDF—a way to build Europe), by a Career Catalyst grant from the Susan Komen Foundation and by institutional funds provided by the Generalitat de Catalunya.

Richard Iggo—This work was supported by the “Fondation pour la lutte contre le cancer et pour des recherches medico-biologiques,” the INCa-DGOS-INSERM 6046 SIRIC BRIO grant, and the French Cancer League (Comité de la Charente Maritime).

Peter Kabos—NIH grant CA164048, Grohne Cancer Research Fund

Michael T. Lewis—This work was supported in part by the Breast Cancer Research Foundation, the Emma Jacobs Clinical Breast Cancer Fund, the Susan G. Komen Foundation, Cancer Fighters of Houston, BCM Cancer Center grant P30 CA125123, BCM Breast Cancer SPORE P50 CA50183, NIH/NCI grant R01 CA112305, and NIH/NCI grant U54 CA149196. The authors also acknowledge the joint participation by Diana Henry Helis Medical Research Foundation through its direct engagement in the continuous active conduct of medical research in conjunction with Baylor College of Medicine and its “Blood-borne BioMarkers for Detection of Breast Cancer” Program.

Shunqiang Li—Susan G. Komen for the Cure (BCTR0707808, KG090422, and PG12220321), Breast Cancer Research Foundation, CTSA grant UL1 RR024992, and The Fashion Footwear Charitable Foundation, Inc.

Geoffrey J. Lindeman and Jane E. Visvader—Received funding support from the Australian National Health and Medical Research Council (NHMRC; 1016701, 1040978, 1086727, 1085191); NHMRC Independent Research Institute Infrastructure Support Scheme (IRIISS) (to WEHI); the Victorian State Government through the Victorian Cancer Agency and Operational Infrastructure Support; the National Breast Cancer Foundation (Australia); the Cancer Therapeutics CRC; and the Australian Cancer Research Foundation. G.J.L. is supported by an NHMRC Research Fellowship (1078730); J.E.V. is supported by an NHMRC Australia Fellowship (1037230).

Funda Meric-Bernstam—MD Anderson Moon Shots funds and Nellie B. Connally Breast Cancer Research Endowment

Helen Piwnica-Worms—This work was supported in part by the Cazalot Breast Cancer Model Resource, The Susan G. Komen Foundation, and The Cancer Prevention and Research Institute of Texas (CPRIT) RP150148.

Jorge Reis-Filho—Research reported in this publication was supported in part by a grant from the Breast Cancer Research Foundation and a Cancer Center Support grant of the National Institutes of Health/National Cancer Institute (grant no. P30CA008748). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Carol Sartorius—NIH grant CA140985.

Alana Welm—The Noreen Fraser Foundation, METAvivor Foundation, AACR Susan G. Komen Career Catalyst award, DOD Breast Cancer Research Program grants W81XWH-08-1-0109 and BC112623, and NIH/NCI grants 1R01CA166422 and 1R01CA173903

Max Wicha—R35: CA129765; RO1 CA101860, Komen for the Cure Promise grant, and Breast Cancer Research Foundation grant

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Lewis.

Ethics declarations

Competing financial interests

Lacey E. Dobrolecki: Compensated part-time employee of StemMed, Ltd.

Susie D. Airhart: No competing financial interests.

Denis G. Alferez: No competing financial interests.

Samuel Aparicio: No competing financial interests.

Fariba Behbod: No competing financial interests.

Mohamed Bentires-Alj: No competing financial interests.

Cathrin Brisken: No competing financial interests.

Carol J. Bult: No competing financial interests.

Robert B. Clarke: No competing financial interests.

Matthew J. Ellis: Receives income from Washington University in St. Louis which has licensed the WHIM series of breast PDX for commercial distribution.

Eva Gonzalez Suarez: No competing financial interests.

Richard Iggo: No competing financial interests.

Peter Kabos: No competing financial interests.

Michael T. Lewis: Receives income from Baylor College of Medicine which has licensed the BCM series of breast PDX for commercial use. Founder and limited partner in StemMed Ltd. and a Manager in StemMed Holdings LLC.

Shunqiang Li: Receives income from Washington University in St. Louis which has licensed the WHIM series of breast PDX for commercial distribution.

Geoffrey J. Lindeman: No competing financial interests.

Elisabetta.Marangoni: No competing financial interests.

Funda Meric-Bernstam: No competing financial interests.

Helen Piwnica-Worms: No competing financial interests.

Marie-France Poupon: Founder and Scientific Advisor to XenTech SA, Genopole, 4 rue Pierre Fontaine, 91000 Evry, France.

Jorge Reis-Filho: No competing financial interests.

Carol Sartorius: No competing financial interests.

Valentina Scabia: No competing financial interests.

George Sflomos: No competing financial interests.

François Vaillant: No competing financial interests.

Jane Visvader: No competing financial interests.

Alana Welm: Receives income if the University of Utah licenses the PDX models for commercial use.

Max S. Wicha: No competing financial interests.

Additional information

On behalf of the International Breast Cancer Patient-derived Xenograft Consortium. Contributors appear in alphabetical order aside from the first and last authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dobrolecki, L.E., Airhart, S.D., Alferez, D.G. et al. Patient-derived xenograft (PDX) models in basic and translational breast cancer research. Cancer Metastasis Rev 35, 547–573 (2016). https://doi.org/10.1007/s10555-016-9653-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-016-9653-x

Keywords

Navigation