Skip to main content

Advertisement

Log in

Evaluation of oncogenic cysteinyl leukotriene receptor 2 as a therapeutic target for uveal melanoma

  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Uveal melanoma is a rare, but deadly, form of eye cancer that arises from melanocytes within the uveal tract. Although advances have emerged in treatment of the primary tumour, patients are still faced with vision loss, eye enucleation and lethal metastatic spread of the disease. Approximately 50% of uveal melanoma patients develop metastases, which occur most frequently in the liver. Metastatic patients encounter an extremely poor prognosis; as few as 8% survive beyond 2 years. Understanding of the genetic underpinnings of this fatal disease evolved in recent years with the identification of new oncogenic mutations that drive uveal melanoma pathogenesis. Despite this progress, the lack of successful therapies or a proven standard-of-care for uveal melanoma highlights the need for new targeted therapies. This review focuses on the recently identified CYSLTR2 oncogenic mutation in uveal melanoma. Here, we evaluate the current status of uveal melanoma and investigate how to better understand the role of this CYSLTR2 mutation in the disease and implications for patients harbouring this mutation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. Correct nomenclature of the cysteinyl leukotriene receptors (CysLT1 and CysLT2) as per the IUPHAR/BPS Guide to PHARMACOLOGY [94].

References

  1. Chang, A. E., Karnell, L. H., & Menck, H. R. (1998). The National Cancer Data Base report on cutaneous and noncutaneous melanoma: a summary of 84,836 cases from the past decade. The American College of Surgeons Commission on Cancer and the American Cancer Society. Cancer, 83(8), 1664–1678.

    Article  PubMed  CAS  Google Scholar 

  2. Virgili, G., Gatta, G., Ciccolallo, L., Capocaccia, R., Biggeri, A., Crocetti, E., Lutz, J. M., Paci, E., & EUROCARE Working Group. (2007). Incidence of uveal melanoma in Europe. Ophthalmology, 114(12), 2309–2315.

    Article  PubMed  Google Scholar 

  3. Krantz, B. A., Dave, N., Komatsubara, K. M., Marr, B. P., Carvajal, R. D. (2017). Uveal melanoma: epidemiology, etiology, and treatment of primary disease. Clin Ophthalmol, 279–89.

  4. Jovanovic, P., Mihajlovic, M., Djordjevic-Jocic, J., Vlajkovic, S., Cekic, S., & Stefanovic, V. (2013). Ocular melanoma: an overview of the current status. International Journal of Clinical and Experimental Pathology, 6(7), 1230–1244.

    PubMed  PubMed Central  Google Scholar 

  5. Registry, N. C. (2017). Cancer in Ireland 1994–2015 with estimates for 2015–2017: Annual Report of the National Cancer Registry. NCR, Cork, Ireland.

  6. Singh, A. D., Turell, M. E., & Topham, A. K. (2011). Uveal melanoma: trends in incidence, treatment, and survival. Ophthalmology, 118(9), 1881–1885.

    Article  PubMed  Google Scholar 

  7. Keenan, T. D., Yeates, D., & Goldacre, M. J. (2012). Uveal melanoma in England: trends over time and geographical variation. The British Journal of Ophthalmology, 96(11), 1415–1419.

    Article  PubMed  Google Scholar 

  8. Damato, E. M., & Damato, B. E. (2012). Detection and time to treatment of uveal melanoma in the United Kingdom: an evaluation of 2,384 patients. Ophthalmology, 119(8), 1582–1589.

    Article  PubMed  Google Scholar 

  9. Robertson, A. G., Shih, J., Yau, C., Gibb, E. A., Oba, J., Mungall, K. L., et al. (2017). Integrative analysis identifies four molecular and clinical subsets in uveal melanoma. Cancer Cell, 32(2), 204–20.e15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Shah, C. P., Weis, E., Lajous, M., Shields, J. A., & Shields, C. L. (2005). Intermittent and chronic ultraviolet light exposure and uveal melanoma: a meta-analysis. Ophthalmology, 112(9), 1599–1607.

    Article  PubMed  Google Scholar 

  11. Ali, Z., Yousaf, N., & Larkin, J. (2013). Melanoma epidemiology, biology and prognosis. EJC Supplements, 11(2), 81–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Pandiani, C., Beranger, G. E., Leclerc, J., Ballotti, R., & Bertolotto, C. (2017). Focus on cutaneous and uveal melanoma specificities. Genes & Development, 31(8), 724–743.

    Article  CAS  Google Scholar 

  13. Yang, J., Manson, D. K., Marr, B. P., & Carvajal, R. D. (2018). Treatment of uveal melanoma: Where are we now? Therapeutic Advances In Medical Oncology, 10, 1758834018757175.

    PubMed  PubMed Central  Google Scholar 

  14. Pham, C. M., Custer, P. L., & Couch, S. M. (2017). Comparison of primary and secondary enucleation for uveal melanoma. Orbit, 36(6), 422–427.

    Article  PubMed  Google Scholar 

  15. Diener-West, M., Earle, J. D., Fine, S. L., Hawkins, B. S., Moy, C. S., Reynolds, S. M., Schachat, A. P., Straatsma, B. R., & Collaborative Ocular Melanoma Study Group. (2001). The COMS randomized trial of iodine 125 brachytherapy for choroidal melanoma, III: initial mortality findings. COMS report no. 18. Archives of Ophthalmology, 119(7), 969–982.

    Article  PubMed  CAS  Google Scholar 

  16. Naseripour, M., Jaberi, R., Sedaghat, A., Azma, Z., Nojomi, M., Falavarjani, K. G., & Nazari, H. (2016). Ruthenium-106 brachytherapy for thick uveal melanoma: reappraisal of apex and base dose radiation and dose rate. Journal of Contemporary Brachytherapy, 1, 66–73.

    Article  Google Scholar 

  17. Zaldivar, R. A., Aaberg, T. M., Sternberg Jr., P., Waldron, R., & Grossniklaus, H. E. (2003). Clinicopathologic findings in choroidal melanomas after failed transpupillary thermotherapy. American Journal of Ophthalmology, 135(5), 657–663.

    Article  PubMed  Google Scholar 

  18. Singh, A. D., Rundle, P. A., Berry-Brincat, A., Parsons, M. A., Rennie, I. G. (2004). Extrascleral extension of choroidal malignant melanoma following transpupillary thermotherapy. Eye (London, England), 91–3.

  19. Damato, B. (2010). Does ocular treatment of uveal melanoma influence survival? British Journal of Cancer, 103(3), 285–290.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Diener-West, M., Reynolds, S. M., Agugliaro, D. J., Caldwell, R., Cumming, K., Earle, J. D., Hawkins, B. S., Hayman, J. A., Jaiyesimi, I., Jampol, L. M., Kirkwood, J. M., Koh, W. J., Robertson, D. M., Shaw, J. M., Straatsma, B. R., Thoma, J., & Collaborative Ocular Melanoma Study Group. (2005). Development of metastatic disease after enrollment in the COMS trials for treatment of choroidal melanoma: collaborative ocular melanoma study group report no. 26. Archives of Ophthalmology, 123(12), 1639–1643.

    Article  PubMed  Google Scholar 

  21. Kuk, D., Shoushtari, A. N., Barker, C. A., Panageas, K. S., Munhoz, R. R., Momtaz, P., Ariyan, C. E., Brady, M. S., Coit, D. G., Bogatch, K., Callahan, M. K., Wolchok, J. D., Carvajal, R. D., & Postow, M. A. (2016). Prognosis of mucosal, uveal, acral, nonacral cutaneous, and unknown primary melanoma from the time of first metastasis. The Oncologist, 21(7), 848–854.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Carvajal, R. D., Sosman, J. A., Quevedo, J. F., Milhem, M. M., Joshua, A. M., Kudchadkar, R. R., Linette, G. P., Gajewski, T. F., Lutzky, J., Lawson, D. H., Lao, C. D., Flynn, P. J., Albertini, M. R., Sato, T., Lewis, K., Doyle, A., Ancell, K., Panageas, K. S., Bluth, M., Hedvat, C., Erinjeri, J., Ambrosini, G., Marr, B., Abramson, D. H., Dickson, M. A., Wolchok, J. D., Chapman, P. B., & Schwartz, G. K. (2014). Effect of selumetinib vs chemotherapy on progression-free survival in uveal melanoma: a randomized clinical trial. Journal of the American Medical Association, 311(23), 2397–2405.

    Article  PubMed  CAS  Google Scholar 

  23. McArthur, G. A., Chapman, P. B., Robert, C., Larkin, J., Haanen, J. B., Dummer, R., et al. (2014). Safety and efficacy of vemurafenib in BRAF(V600E) and BRAF(V600K) mutation-positive melanoma (BRIM-3): extended follow-up of a phase 3, randomised, open-label study. The Lancet Oncology, 15(3), 323–332.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Field, M. G., & Harbour, J. W. (2014). GNAQ/11 mutations in uveal melanoma: is YAP the key to targeted therapy? Cancer Cell, 25(6), 714–715.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Carvajal, R. D., Piperno-Neumann, S., Kapiteijn, E., Chapman, P. B., Frank, S., Joshua, A. M., Piulats, J. M., Wolter, P., Cocquyt, V., Chmielowski, B., Evans, T. R. J., Gastaud, L., Linette, G., Berking, C., Schachter, J., Rodrigues, M. J., Shoushtari, A. N., Clemett, D., Ghiorghiu, D., Mariani, G., Spratt, S., Lovick, S., Barker, P., Kilgour, E., Lai, Z., Schwartz, G. K., & Nathan, P. (2018). Selumetinib in combination with dacarbazine in patients with metastatic uveal melanoma: a phase III, multicenter, randomized trial (SUMIT). Journal of Clinical Oncology, 36(12), 1232–1239.

    Article  PubMed  Google Scholar 

  26. Helgadottir, H., Höiom, V. (2016). The genetics of uveal melanoma: current insights. Appl Clin Genet, 147–55.

  27. Onken, M. D., Worley, L. A., Tuscan, M. D., & Harbour, J. W. (2010). An accurate, clinically feasible multi-gene expression assay for predicting metastasis in uveal melanoma. The Journal of Molecular Diagnostics, 12(4), 461–468.

    Article  PubMed  CAS  Google Scholar 

  28. Harbour, J. W. (2014). A prognostic test to predict the risk of metastasis in uveal melanoma based on a 15-gene expression profile. Methods in Molecular Biology, 1102, 427–440.

    Article  PubMed  CAS  Google Scholar 

  29. Field, M. G., & Harbour, J. W. (2014). Recent developments in prognostic and predictive testing in uveal melanoma. Current Opinion in Ophthalmology, 25(3), 234–239.

    Article  PubMed  PubMed Central  Google Scholar 

  30. White, V. A., Chambers, J. D., Courtright, P. D., Chang, W. Y., & Horsman, D. E. (1998). Correlation of cytogenetic abnormalities with the outcome of patients with uveal melanoma. Cancer, 83(2), 354–359.

    Article  PubMed  CAS  Google Scholar 

  31. Kilic, E., van Gils, W., Lodder, E., Beverloo, H. B., van Til, M. E., Mooy, C. M., Paridaens, D., de Klein, A., & Luyten, G. P. M. (2006). Clinical and cytogenetic analyses in uveal melanoma. Investigative Ophthalmology & Visual Science, 47(9), 3703–3707.

    Article  Google Scholar 

  32. Staby, K. M., Gravdal, K., Mork, S. J., Heegaard, S., Vintermyr, O. K., & Krohn, J. (2018). Prognostic impact of chromosomal aberrations and GNAQ, GNA11 and BAP1 mutations in uveal melanoma. Acta Ophthalmologica, 96(1), 31–38.

    Article  PubMed  CAS  Google Scholar 

  33. Kaliki, S., Shields. C. L., Shields, J. A. (2015). Uveal melanoma: estimating prognosis. Indian Journal of Ophthalmology, 93–102.

  34. Shoushtari, A. N., & Carvajal, R. D. (2014). GNAQ and GNA11 mutations in uveal melanoma. Melanoma Research, 24(6), 525–534.

    Article  PubMed  CAS  Google Scholar 

  35. Van Raamsdonk, C. D., Griewank, K. G., Crosby, M. B., Garrido, M. C., Vemula, S., Wiesner, T., et al. (2010). Mutations in GNA11 in uveal melanoma. New England Journal of Medicine, 363(23), 2191–2199.

    Article  PubMed  Google Scholar 

  36. Van Raamsdonk, C. D., Bezrookove, V., Green, G., Bauer, J., Gaugler, L., O'Brien, J. M., et al. (2009). Frequent somatic mutations of GNAQ in uveal melanoma and blue naevi. Nature, 457(7229), 599–602.

    Article  PubMed  CAS  Google Scholar 

  37. Johansson, P., Aoude, L. G., Wadt, K., Glasson, W. J., Warrier, S. K., Hewitt, A. W., Kiilgaard, J. F., Heegaard, S., Isaacs, T., Franchina, M., Ingvar, C., Vermeulen, T., Whitehead, K. J., Schmidt, C. W., Palmer, J. M., Symmons, J., Gerdes, A. M., Jönsson, G., & Hayward, N. K. (2016). Deep sequencing of uveal melanoma identifies a recurrent mutation in PLCB4. Oncotarget, 7(4), 4624–4631.

    Article  PubMed  Google Scholar 

  38. Harbour, J. W., Roberson, E. D., Anbunathan, H., Onken, M. D., Worley, L. A., & Bowcock, A. M. (2013). Recurrent mutations at codon 625 of the splicing factor SF3B1 in uveal melanoma. Nature Genetics, 45(2), 133–135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Martin, M., Masshofer, L., Temming, P., Rahmann, S., Metz, C., Bornfeld, N., et al. (2013). Exome sequencing identifies recurrent somatic mutations in EIF1AX and SF3B1 in uveal melanoma with disomy 3. Nature Genetics, 45(8), 933–936.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Harbour, J. W., Onken, M. D., Roberson, E. D., Duan, S., Cao, L., Worley, L. A., et al. (2010). Frequent mutation of BAP1 in metastasizing uveal melanomas. Science, 330(6009), 1410–1413.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Moore, A. R., Ceraudo, E., Sher, J. J., Guan, Y., Shoushtari, A. N., Chang, M. T., Zhang, J. Q., Walczak, E. G., Kazmi, M. A., Taylor, B. S., Huber, T., Chi, P., Sakmar, T. P., & Chen, Y. (2016). Recurrent activating mutations of G-protein-coupled receptor CYSLTR2 in uveal melanoma. Nature Genetics, 48(6), 675–680.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Robson, M., Im, S.-A., Senkus, E., Xu, B., Domchek, S. M., Masuda, N., Delaloge, S., Li, W., Tung, N., Armstrong, A., Wu, W., Goessl, C., Runswick, S., & Conte, P. (2017). Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. New England Journal of Medicine, 377(6), 523–533.

    Article  PubMed  CAS  Google Scholar 

  43. Bisgaard, H. (2001). Pathophysiology of the cysteinyl leukotrienes and effects of leukotriene receptor antagonists in asthma. Allergy, 56(Suppl 66), 7–11.

    Article  PubMed  Google Scholar 

  44. D'Urzo, A. D., & Chapman, K. R. (2000). Leukotriene-receptor antagonists. Role in asthma management. Canadian Family Physician, 46, 872–879.

    PubMed  PubMed Central  CAS  Google Scholar 

  45. Kanaoka, Y., & Boyce, J. A. (2004). Cysteinyl leukotrienes and their receptors: cellular distribution and function in immune and inflammatory responses. Journal of Immunology, 173, 1503–1510.

    Article  CAS  Google Scholar 

  46. Kanaoka, Y., Maekawa, A., & Austen, K. F. (2013). Identification of GPR99 protein as a potential third cysteinyl leukotriene receptor with a preference for leukotriene E4 ligand. The Journal of Biological Chemistry, 288(16), 10967–10972.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Savari, S., Vinnakota, K., Zhang, Y., Sjölander, A. (2014). Cysteinyl leukotrienes and their receptors: bridging inflammation and colorectal cancer. World Journal of Gastroenterology, 968–77.

  48. Laidlaw, T. M., Boyce, J. A. (2012). Cysteinyl leukotriene receptors, old and new; implications for asthma. Clinical and Experimental Allergy, 1313–20.

  49. Lynch, K. R., O’Neill, G. P., Liu, Q., Im, D. S., Sawyer, N., Metters, K. M., et al. (1999) Characterization of the human cysteinyl leukotriene CysLT1 receptor. Nature, 789–93.

  50. Heise, C. E., O'Dowd, B. F., Figueroa, D. J., Sawyer, N., Nguyen, T., Im, D. S., Stocco, R., Bellefeuille, J. N., Abramovitz, M., Cheng, R., Williams Jr., D. L., Zeng, Z., Liu, Q., Ma, L., Clements, M. K., Coulombe, N., Liu, Y., Austin, C. P., George, S. R., O'Neill, G. P., Metters, K. M., Lynch, K. R., & Evans, J. F. (2000). Characterization of the human cysteinyl leukotriene 2 receptor. The Journal of Biological Chemistry, 275(39), 30531–30536.

    Article  PubMed  CAS  Google Scholar 

  51. Jans, D. A., Xiao, C. Y., & Lam, M. H. (2000). Nuclear targeting signal recognition: a key control point in nuclear transport? BioEssays, 22(6), 532–544.

    Article  PubMed  CAS  Google Scholar 

  52. Servant, M. J., Tenoever, B., & Lin, R. (2002). Overlapping and distinct mechanisms regulating IRF-3 and IRF-7 function. Journal of Interferon & Cytokine Research, 22(1), 49–58.

    Article  CAS  Google Scholar 

  53. Ciana P, et al. The orphan receptor GPR17 identified as a new dual uracil nucleotides/cysteinyl-leukotrienes receptor. The EMBO Journal 2006. p. 4615–4627, 25.

  54. Lee, K. S. (2004). Cysteinyl leukotriene receptor antagonist regulates vascular permeability by reducing vascular endothelial growth factor expression. The journal of allergy and clinical immunology, 1093–99.

  55. Marom, Z., Shelhamer, J. H., Bach, M. K., Morton, D. R., & Kaliner, M. (1982). Slow-reacting substances, leukotrienes C4 and D4, increase the release of mucus from human airways in vitro. The American Review of Respiratory Disease, 126(3), 449–451.

    PubMed  CAS  Google Scholar 

  56. Drazen, J. M., Austen, K. F., Lewis, R. A., Clark, D. A., Goto, G., Marfat, A., & Corey, E. J. (1980). Comparative airway and vascular activities of leukotrienes C-1 and D in vivo and in vitro. Proceedings of the National Academy of Sciences of the United States of America, 77(7), 4354–4358.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  57. Burke, L., Butler, C. T., Murphy, A., Moran, B., Gallagher, W. M., O'Sullivan, J., & Kennedy, B. N. (2016). Evaluation of cysteinyl leukotriene signaling as a therapeutic target for colorectal Cancer. Frontiers in Cell and Development Biology, 4.

  58. Funao, K., Matsuyama, M., Naganuma, T., Kawahito, Y., Sano, H., Nakatani, T., & Yoshimura, R. (2008). The cysteinylLT1 receptor in human renal cell carcinoma. Molecular Medicine Reports, 1(2), 185–189.

    PubMed  CAS  Google Scholar 

  59. Matsuyama, M., Funao, K., Hayama, T., Tanaka, T., Kawahito, Y., Sano, H., Takemoto, Y., Nakatani, T., & Yoshimura, R. (2009). Relationship between cysteinyl-leukotriene-1 receptor and human transitional cell carcinoma in bladder. Urology, 73(4), 916–921.

    Article  PubMed  Google Scholar 

  60. Matsuyama, M., Funao, K., Kawahito, Y., Sano, H., Chargui, J., Touraine, J. L., Nakatani, T., & Yoshimura, R. (2009). Expression of cysteinylLT1 receptor in human testicular cancer and growth reduction by its antagonist through apoptosis. Molecular Medicine Reports, 2(2), 163–167.

    PubMed  CAS  Google Scholar 

  61. Nielsen, C. K., Ohd, J. F., Wikstrom, K., Massoumi, R., Paruchuri, S., Juhas, M., et al. (2003). The leukotriene receptor CysLT1 and 5-lipoxygenase are upregulated in colon cancer. Advances in Experimental Medicine and Biology, 525, 201–204.

    Article  PubMed  CAS  Google Scholar 

  62. Tsai, M. J., Wu, P. H., Sheu, C. C., Hsu, Y. L., Chang, W. A., Hung, J. Y., et al. (2016). Cysteinyl leukotriene receptor antagonists decrease Cancer risk in asthma patients. Scientific Reports, 6.

  63. Moller, I., Murali, R., Muller, H., Wiesner, T., Jackett, L. A., Scholz, S. L., et al. (2017). Activating cysteinyl leukotriene receptor 2 (CYSLTR2) mutations in blue nevi. Modern Pathology, 30(3), 350–356.

    Article  PubMed  CAS  Google Scholar 

  64. Magnusson, C., Mezhybovska, M., Lorinc, E., Fernebro, E., Nilbert, M., & Sjolander, A. (2010). Low expression of CysLT1R and high expression of CysLT2R mediate good prognosis in colorectal cancer. European Journal of Cancer, 46(4), 826–835.

    Article  PubMed  CAS  Google Scholar 

  65. Magnusson, C., Liu, J., Ehrnstrom, R., Manjer, J., Jirstrom, K., Andersson, T., et al. (2011). Cysteinyl leukotriene receptor expression pattern affects migration of breast cancer cells and survival of breast cancer patients. International Journal of Cancer, 129(1), 9–22.

    Article  PubMed  CAS  Google Scholar 

  66. Magnusson, C., Bengtsson, A. M., Liu, M., Liu, J., Ceder, Y., Ehrnstrom, R., et al. (2011). Regulation of cysteinyl leukotriene receptor 2 expression–a potential anti-tumor mechanism. PLoS One, 6(12), e29060.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  67. Mehdawi, L. M., Satapathy, S. R., Gustafsson, A., Lundholm, K., Alvarado-Kristensson, M., & Sjolander, A. (2017). A potential anti-tumor effect of leukotriene C4 through the induction of 15-hydroxyprostaglandin dehydrogenase expression in colon cancer cells. Oncotarget, 8(21), 35033–35047.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Maiga, A., Lemieux, S., Pabst, C., Lavallee, V. P., Bouvier, M., Sauvageau, G., et al. (2016). Transcriptome analysis of G protein-coupled receptors in distinct genetic subgroups of acute myeloid leukemia: identification of potential disease-specific targets. Blood Cancer Journal, 6(6), e431.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Jiang, Y., Borrelli, L. A., Kanaoka, Y., Bacskai, B. J., & Boyce, J. A. (2007). CysLT2 receptors interact with CysLT1 receptors and down-modulate cysteinyl leukotriene–dependent mitogenic responses of mast cells. Blood, 110(9), 3263–3270.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Kanaoka, Y., & Boyce, J. A. (2014). Cysteinyl leukotrienes and their receptors; emerging concepts. Allergy, Asthma & Immunology Research, 6(4), 288–295.

    Article  CAS  Google Scholar 

  71. Bennett, D. C., Cooper, P. J., & Hart, I. R. (1987). A line of non-tumorigenic mouse melanocytes, syngeneic with the B16 melanoma and requiring a tumour promoter for growth. International Journal of Cancer, 39(3), 414–418.

    Article  PubMed  CAS  Google Scholar 

  72. Griewank, K. G., Yu, X., Khalili, J., Sozen, M. M., Stempke-Hale, K., Bernatchez, C., Wardell, S., Bastian, B. C., & Woodman, S. E. (2012). Genetic and molecular characterization of uveal melanoma cell lines. Pigment Cell & Melanoma Research, 25(2), 182–187.

    Article  CAS  Google Scholar 

  73. Chen, X., Wu, Q., Tan, L., Porter, D., Jager, M. J., Emery, C., & Bastian, B. C. (2014). Combined PKC and MEK inhibition in uveal melanoma with GNAQ and GNA11 mutations. Oncogene, 33(39), 4724–4734.

    Article  PubMed  CAS  Google Scholar 

  74. Reynolds, A. L. (2016). Phenotype based discovery of 2-[(E)-2-(QUINOLIN-2-YL)VINYL]PHENOL as a novel regulator of ocular angiogenesis. The Journal of Biological Chemistry.

  75. Butler, C. T., Reynolds, A. L., Tosetto, M., Dillon, E. T., Guiry, P. J., Cagney, G., O'Sullivan, J., & Kennedy, B. N. (2017). A quininib analogue and cysteinyl leukotriene receptor antagonist inhibits vascular endothelial growth factor (VEGF)-independent angiogenesis and exerts an additive antiangiogenic response with bevacizumab. The Journal of Biological Chemistry, 292(9), 3552–3567.

    Article  PubMed  CAS  Google Scholar 

  76. Loukopoulos, P., Kanetaka, K., Takamura, M., Shibata, T., Sakamoto, M., & Hirohashi, S. (2004). Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas, 29(3), 193–203.

    Article  PubMed  CAS  Google Scholar 

  77. DeRose, Y. S., Wang, G., Lin, Y. C., Bernard, P. S., Buys, S. S., Ebbert, M. T., et al. (2011). Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nature Medicine, 17(11), 1514–1520.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Zhao, X., Liu, Z., Yu, L., Zhang, Y., Baxter, P., Voicu, H., Gurusiddappa, S., Luan, J., Su, J. M., Leung, H. C. E., & Li, X. N. (2012). Global gene expression profiling confirms the molecular fidelity of primary tumor-based orthotopic xenograft mouse models of medulloblastoma. Neuro-Oncology, 14(5), 574–583.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Carita, G., Némati, F., & Decaudin, D. (2015). Uveal melanoma patient-derived xenografts. Ocular Oncology and Pathology, 1(3), 161–169.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Nemati, F., Sastre-Garau, X., Laurent, C., Couturier, J., Mariani, P., Desjardins, L., Piperno-Neumann, S., Lantz, O., Asselain, B., Plancher, C., Robert, D., Peguillet, I., Donnadieu, M. H., Dahmani, A., Bessard, M. A., Gentien, D., Reyes, C., Saule, S., Barillot, E., Roman-Roman, S., & Decaudin, D. (2010). Establishment and characterization of a panel of human uveal melanoma xenografts derived from primary and/or metastatic tumors. Clinical Cancer Research, 16(8), 2352–2362.

    Article  PubMed  CAS  Google Scholar 

  81. Hoffman, R. M. (2015). Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nature Reviews. Cancer, 15(8), 451–452.

    Article  PubMed  CAS  Google Scholar 

  82. Kageyama, K., Ohara, M., Saito, K., Ozaki, S., Terai, M., Mastrangelo, M. J., Fortina, P., Aplin, A. E., & Sato, T. (2017). Establishment of an orthotopic patient-derived xenograft mouse model using uveal melanoma hepatic metastasis. Journal of Translational Medicine, 15, 145.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Tudhope, S. R., Cuthbert, N. J., Abram, T. S., Jennings, M. A., Maxey, R. J., Thompson, A. M., Norman, P., & Gardiner, P. J. (1994). BAY u9773, a novel antagonist of cysteinyl-leukotrienes with activity against two receptor subtypes. European Journal of Pharmacology, 264(3), 317–323.

    Article  PubMed  CAS  Google Scholar 

  84. Wunder, F., Tinel, H., Kast, R., Geerts, A., Becker, E. M., Kolkhof, P., Hütter, J., Ergüden, J., & Härter, M. (2010). Pharmacological characterization of the first potent and selective antagonist at the cysteinyl leukotriene 2 (CysLT(2)) receptor. British Journal of Pharmacology, 160(2), 399–409.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Khilnani, G., & Khilnani, A. K. (2011). Inverse agonism and its therapeutic significance. Indian Journal of Pharmacology, 43(5), 492–501.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Lappano, R., & Maggiolini, M. (2017). Pharmacotherapeutic targeting of G protein-coupled receptors in oncology: examples of approved therapies and emerging concepts. Drugs, 77(9), 951–965.

    Article  PubMed  CAS  Google Scholar 

  87. Ramsey, D. M., & McAlpine, S. R. (2013). Halting metastasis through CXCR4 inhibition. Bioorganic & Medicinal Chemistry Letters, 23(1), 20–25.

    Article  CAS  Google Scholar 

  88. Innamorati, G., Valenti, M. T., Giovinazzo, F., Carbonare, L. D., Parenti, M., & Bassi, C. (2011). Molecular approaches to target GPCRs in cancer therapy. Pharmaceuticals, 4(4), 567–589.

    Article  PubMed Central  CAS  Google Scholar 

  89. Dupre, D. J., Le Gouill, C., Gingras, D., Rola-Pleszczynski, M., & Stankova, J. (2004). Inverse agonist activity of selected ligands of the cysteinyl-leukotriene receptor 1. The Journal of Pharmacology and Experimental Therapeutics, 309(1), 102–108.

    Article  PubMed  CAS  Google Scholar 

  90. Bond, R. A., & Ijzerman, A. P. (2006). Recent developments in constitutive receptor activity and inverse agonism, and their potential for GPCR drug discovery. Trends in Pharmacological Sciences, 27(2), 92–96.

    Article  PubMed  CAS  Google Scholar 

  91. Zembowicz, A., & Phadke, P. A. (2011). Blue nevi and variants: an update. Archives of Pathology & Laboratory Medicine, 135(3), 327–336.

    Google Scholar 

  92. Costa, S., Byrne, M., Pissaloux, D., Haddad, V., Paindavoine, S., Thomas, L., Aubin, F., Lesimple, T., Grange, F., Bonniaud, B., Mortier, L., Mateus, C., Dreno, B., Balme, B., Vergier, B., & de la Fouchardiere, A. (2016). Melanomas associated with blue nevi or mimicking cellular blue nevi: clinical, pathologic, and molecular study of 11 cases displaying a high frequency of GNA11 mutations, BAP1 expression loss, and a predilection for the scalp. The American Journal of Surgical Pathology, 40(3), 368–377.

    Article  PubMed  Google Scholar 

  93. Perez-Alea, M., Vivancos, A., Caratu, G., Matito, J., Ferrer, B., Hernandez-Losa, J., et al. (2016). Genetic profile of GNAQ-mutated blue melanocytic neoplasms reveals mutations in genes linked to genomic instability and the PI3K pathway. Oncotarget, 7(19), 28086–28095.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Rovati, E. G., Bäck, M., Dahlén S.-E., Drazen, J., Evans, J. F., Shimizu, T., et al. Leukotriene receptors: CysLT 2 receptor. http://www.guidetopharmacology.org/GRAC/ObjectDisplayForward?objectId=270: IUPHAR/BPS Guide to PHARMACOLOGY; 20/02/2018 [cited 2018 27/05].

Download references

Acknowledgements

We wish to thank Noel Horgan, Jens Rauch and Sean Ennis for discussions and comments on the manuscript.

Funding

Research related to some of the topics discussed in this review is funded by an Irish Research Council Employment Based Postgraduate Scholarship (EBP/2017/473). This project area has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 734907 (RISE/3D-NEONET project).

Author information

Authors and Affiliations

Authors

Contributions

KS was the primary author of the review. PSH and AMB contributed intellectual input. JMP, AV and AP were responsible for PDOX model development and drafted a section for the review. BNK contributed significant intellectual input, revised and edited the review. All authors reviewed the final manuscript.

Corresponding author

Correspondence to B. N. Kennedy.

Ethics declarations

Conflict of interest

KS is an employee of Genomics Medicine Ireland. AV is the chief scientific officer and co-founder of Xenopat S.L. AP is the chief executive officer and co-founder of Xenopat S.L.

The other authors declare no competing financial interests that could be construed as a potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Slater, K., Hoo, P.S., Buckley, A.M. et al. Evaluation of oncogenic cysteinyl leukotriene receptor 2 as a therapeutic target for uveal melanoma. Cancer Metastasis Rev 37, 335–345 (2018). https://doi.org/10.1007/s10555-018-9751-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10555-018-9751-z

Keywords

Navigation