Skip to main content
Log in

Exendin-4 Attenuates Remodeling in the Remote Myocardium of Rats After an Acute Myocardial Infarction by Activating β-Arrestin-2, Protein Phosphatase 2A, and Glycogen Synthase Kinase-3 and Inhibiting β-Catenin

  • Original Article
  • Published:
Cardiovascular Drugs and Therapy Aims and scope Submit manuscript

Abstract

Purpose

This study tested if the protective anti-remodeling effect of GLP-1 agonist Exendin-4 after an acute myocardial infarction (MI) in rats involves inhibition of the Wnt1/β-catenin signaling pathway.

Methods

Rats were divided into sham, sham + Exendin-4 (10 μg/day, i.p), MI, and MI + Exendin-4. MI was introduced to rats by permanent left anterior descending coronary artery (LAD) ligation.

Results

On day 7 post-infraction, MI rats showed LV dysfunction with higher serum levels of cardiac markers. Their remote myocardia showed increased mRNA and protein levels of collagen I/III with higher levels of reactive oxygen species (ROS) and inflammatory cytokines, as well as protein levels of Wnt1, phospho-Akt, transforming growth factor (TGF-β1), Smad, phospho-Smad3, α-SMA, caspase-3, and Bax. They also showed higher protein levels of phospho-glycogen synthase kinase-3β (p-GSK3β), as well as total, phosphorylated, and nuclear β-catenin with a concomitant decrease in the levels of cyclic adenosine monophosphate (cAMP), mRNA of manganese superoxide dismutase (MnSOD), and protein levels of Bcl-2, β-arrestin-2, and protein phosphatase-2 (PP2A). Administration of Exendin-4 to MI rats reduced the infarct size and reversed the aforementioned signaling molecules without altering protein levels of TGF-1β and Wnt1 or Akt activation. Interestingly, Exendin-4 increased mRNA levels of MnSOD, protein levels of β-arrestin-2 and PP2A, and β-catenin phosphorylation but reduced the phosphorylation of GSK3β and Smad3, and total β-catenin levels in the LV of control rats.

Conclusion

Exendin-4 inhibits the remodeling in the remote myocardium of rats following acute MI by attenuating β-catenin activation and activating β-arrestin-2, PP2A, and GSK3β.

A graphical abstract that illustrates the mechanisms by which Exendin-4 inhibits cardiac remodeling in remote myocardium of left ventricle MI-induced rats. Mechanisms are assumed to occur in the cardiomyocytes and/or other resident cells such as fibroblast. Β-catenin activation and nuclear translocation are associated with increased synthesis of inflammatory cytokines and transforming growth factor β-1 (TGF-β1). GSK3β is inhibited by phosphorylation at Ser9. Under normal conditions, β-catenin is degraded in the cytoplasm by the active GSK3β-dependent degradation complex (un-phosphorylated) which usually phosphorylates β-catenin at Ser33/37/Thr41. After MI, TGF-β1, and Wnt 1 levels are significantly increased, the overproduction of Wnt1 induces β-catenin stabilization and nuclear translocation through increasing the phosphorylation of disheveled (DVL) protein which in turn phosphorylates and inhibits GSK3β. TGF-β1 stimulates the phosphorylation of Smad-3 and subsequent nuclear translocation to activate the transcription of collage 1/III and α-smooth muscle actin (α-SMA). Besides, TGF-β1 stabilizes cytoplasmic β-catenin levels indirectly by phosphorylation of Akt at Thr308-induced inhibition of GSK3β by increasing phosphorylation of Ser9. Exendin-4, and possibly through G protein-coupled receptors (GPCRs), increases levels of cAMP and upregulates β-arrestin-2 levels. Both can result in a positive inotropic effect. Besides, β-arrestin-2 can stimulate PP2A to dephosphorylation Smad3 (inhibition) and GSK3β (activation), thus reduces fibrosis and prevents the activation of β-catenin and collagen deposition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Suthahar N, Meijers WC, Silljé HH, et al. From inflammation to fibrosis—molecular and cellular mechanisms of myocardial tissue remodelling and perspectives on differential treatment opportunities. Curr Heart Fail Rep. 2017;14:235–50.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Kurose H, Mangmool S. Myofibroblasts and inflammatory cells as players of cardiac fibrosis. Arch Pharm Res. 2016;39:1100–13.

    CAS  PubMed  Google Scholar 

  3. Volders PG, Willems IE, Cleutjens JP, et al. Interstitial collagen is increased in the non-infarcted human myocardium after myocardial infarction. J Mol Cell Cardiol. 1993;25:1317–23.

    CAS  PubMed  Google Scholar 

  4. Zornoff LA, Paiva SA, Minicucci MF, et al. Experimental myocardium infarction in rats: analysis of the model. Arq Bras Cardiol. 2009;93:434–2.

    PubMed  Google Scholar 

  5. Sun Y, Weber KT. Infarct scar: a dynamic process. Cardiovasc Res. 2000;46:250–6.

    CAS  PubMed  Google Scholar 

  6. Palojoki E, Saraste A, Eriksson A, Pulkki K, Kallajoki M, Voipio-Pulkki LM, et al. Cardiomyocyte apoptosis and ventricular remodeling after myocardial infarction in rats. Am J Phys Heart Circ Phys. 2001;280:H2726–31.

    CAS  Google Scholar 

  7. Fliss H, Gattinger D. Apoptosis in ischemic and reperfused rat myocardium. Circ Res. 1996;79:949–56.

    CAS  PubMed  Google Scholar 

  8. Riad A, Jäger S, Sobirey M, Escher F, Yaulema-Riss A, Westermann D, et al. Toll-like receptor-4 modulates survival by induction of left ventricular remodeling after myocardial infarction in mice. J Immunol. 2008;180:6954–61.

    CAS  PubMed  Google Scholar 

  9. Weisman HF, Bush DE, Mannisi JA, Bulkley BH. Global cardiac remodeling after acute myocardial infarction: a study in the rat model. J Am Coll Cardiol. 1985;5:1355–62.

    CAS  PubMed  Google Scholar 

  10. van Krimpen C, Smits JF, Cleutjens JP, et al. DNA synthesis in the non-infarcted cardiac interstitium after left coronary artery ligation in the rat: effects of captopril. J Mol Cell Cardiol. 1991;23:1245–53.

    PubMed  Google Scholar 

  11. Richards P, Parker HE, Adriaenssens AE, Hodgson JM, Cork SC, Trapp S, et al. Identification and characterization of a glucagon like peptide-1 receptor-expressing cells using a new transgenic mouse model. Diabetes. 2014;63:1224–33.

    CAS  PubMed  Google Scholar 

  12. Cleutjens JP, Verluyten MJ, Smiths JF, Daemen MJ. Collagen remodeling after myocardial infarction in the rat heart. Am J Pathol. 1995;147:325–38.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yang F, Liu YH, Yang XP, Xu J, Kapke A, Carretero OA. Myocardial infarction and cardiac remodeling in mice. Exp Physiol. 2002;87:547–55.

    CAS  PubMed  Google Scholar 

  14. Hermans KC, Daskalopoulos EP, Blankesteijn W. Interventions in Wnt signaling as a novel therapeutic approach to improve myocardial infarct healing. Fibrogenesis Tissue Repair. 2012;5:16.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Oerlemans MI, Goumans MJ, van Middelaar B, et al. Active Wnt signaling in response to cardiac injury. Basic Res Cardiol. 2010;105:631–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Zhou Y, Zhao X, Hua Y, Chen H, et al. Aldehyde dehydrogenase-2 protects against myocardial infarction-related cardiac fibrosis through modulation of the Wnt/β-catenin signaling pathway. Ther Clin Risk Manag. 2015;11:1371–81.

    PubMed  PubMed Central  Google Scholar 

  17. Działo E, Tkacz K, Błyszczuk P. Crosstalk between TGF-β and WNT signaling pathways during cardiac fibrogenesis. Acta Biochim Pol. 2018;65:341–9.

    PubMed  Google Scholar 

  18. Fu W-B, Wang WE, Zeng C-Y. Wnt signaling pathways in myocardial infarction and the therapeutic effects of Wnt pathway inhibitors. Acta Pharmacol Sin. 2018;40:9–12.

    PubMed  PubMed Central  Google Scholar 

  19. Kobayashi K, Luo M, Zhang Y, Wilkes DC, Ge G, Grieskamp T, et al. Secreted frizzled-related protein 2 is a procollagen C proteinase enhancer with a role in fibrosis associated with myocardial infarction. Nat Cell Biol. 2008;11:46–55.

    PubMed  PubMed Central  Google Scholar 

  20. Matsushima K, Suyama T, Takenaka C, Nishishita N, Ikeda K, Ikada Y, et al. Secreted frizzled related protein 4 reduces fibrosis scar size and ameliorates cardiac function after ischemic injury. Tissue Eng A. 2010;16:3329–41.

    CAS  Google Scholar 

  21. Ma B, Hottiger MO. Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation. Front Immunol. 2016;7:378.

    PubMed  PubMed Central  Google Scholar 

  22. Moon RT, Kohn AD, Ferrari GVD, et al. WNT and β-catenin signaling: diseases and therapies. Nat Rev Genet. 2004;5:691701.

    Google Scholar 

  23. Sklepkiewicz P, Shiomi T, Kaur R, Sun J, Kwon S, Mercer B, et al. Loss of secreted frizzled-related protein-1 leads to deterioration of cardiac function in mice and plays a role in human cardiomyopathy. Circ Heart Fail. 2015;8:362–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Barandon L, Couffinhal T, Ezan J, Dufourcq P, Costet P, Alzieu P, et al. Reduction of infarct size and prevention of cardiac rupture in transgenic mice overexpressing FrzA. Circulation. 2003;108:2282–9.

    CAS  PubMed  Google Scholar 

  25. Blyszczuk P, Müller-Edenborn B, Valenta T, Osto E, Stellato M, Behnke S, et al. Transforming growth factor-β-dependent Wnt secretion controls myofibroblast formation and myocardial fibrosis progression in experimental autoimmune myocarditis. Eur Heart J. 2017;38:1413–25.

    CAS  PubMed  Google Scholar 

  26. Blankesteijn WM, Essers-Janssen YP, et al. A homologue of Drosophila tissue polarity gene frizzled is expressed in migrating myofibroblasts in the infarcted rat heart. Nat Med. 1997;3:541–4.

    CAS  PubMed  Google Scholar 

  27. Chen L, Wu Q, Guo F, Xia B, Zuo J. Expression of Dishevelled-1 in wound healing after acute myocardial infarction: possible involvement in myofibroblast proliferation and migration. J Cell Mol Med. 2004;8:257–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Saraswati S, Alfaro MP, Thorne CA, Atkinson J, Lee E, Young PP. Pyrvinium, a potent small-molecule Wnt inhibitor, promotes wound repair and post-MI cardiac remodeling. PLoS One. 2010;5:e15521.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Verge D, Lopez X. Impact of GLP-1 and GLP-1 receptor agonists on cardiovascular risk factors in type 2 diabetes. Curr Diabetes Rev. 2010;999:1–10.

    Google Scholar 

  30. Li J, Zheng J, Wang S, et al. Cardiovascular benefits of native GLP-1 and its metabolites: an Indicator for GLP-1-therapy strategies. Front Physiol. 2017;8:15.

    PubMed  PubMed Central  Google Scholar 

  31. Chen J, Wang D, Wang F, Shi S, Chen Y, Yang B, et al. Exendin-4 inhibits structural remodeling and improves Ca2+ homeostasis in rats with heart failure via the GLP-1 receptor through the eNOS/cGMP/PKG pathway. Peptides. 2017;90:69–77.

    CAS  PubMed  Google Scholar 

  32. Eid RA, Zaki MSA, Al-Shraim M, et al. Subacute ghrelin administration inhibits apoptosis and improves ultrastructural abnormalities in remote myocardium post-myocardial infarction. Biomed Pharmacother. 2018;101:920–8.

    CAS  PubMed  Google Scholar 

  33. Eid RA, Alkhateeb MA, Eleawa S, al-Hashem FH, al-Shraim M, el-kott AF, et al. Cardioprotective effect of ghrelin against myocardial infarction-induced left ventricular injury via inhibition of SOCS3 and activation of JAK2/STAT3 signaling. Basic Res Cardiol. 2018;113:13.

    PubMed  Google Scholar 

  34. Timmers L, Henriques JP, Kleijn DPD, et al. Exenatide reduces infarct size and improves cardiac function in a porcine model of ischemia and reperfusion injury. J Am Coll Cardiol. 2009;53:501–10.

    CAS  PubMed  Google Scholar 

  35. Robinson E, Cassidy RS, Tate M, et al. Exendin-4 protects against post-myocardial infarction remodeling via specific actions on inflammation and the extracellular matrix. Basic Res Cardiol. 2015;110:20.

    PubMed  PubMed Central  Google Scholar 

  36. Woo JS, Kim W, Ha SJ, et al. Cardioprotective effects of exenatide in patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention; results of exenatide myocardial protection in revascularization (EMPIRE) study. Am J Cardiol. 2013;33:2252–60.

    CAS  Google Scholar 

  37. Sonne DP, Engstrøm T, Treiman M. Protective effects of GLP-1 analogues exendin-4 and GLP-1(9-36) amide against ischemia-reperfusion injury in rat heart. Regul Pept. 2008;146:243–9.

    CAS  PubMed  Google Scholar 

  38. Du J, Zhang L, Wang Z, et al. Exendin-4 induces myocardial protection through MKK3 and Akt-1 in infarcted hearts. Am J Phys Cell Phys. 2016;310:C270–83.

    Google Scholar 

  39. Wang D, Jiang L, Feng B, He N, Zhang Y, Ye H. Protective effects of glucagon-like peptide-1 on cardiac remodeling by inhibiting oxidative stress through mammalian target of rapamycin complex 1/p70 ribosomal protein S6 kinase pathway in diabetes mellitus. J Diabetes Investig. 2020;11:39–51.

    CAS  PubMed  Google Scholar 

  40. Lønborg J, Vejlstrup N, Kelbæk H, Bøtker HE, Kim WY, Mathiasen AB, et al. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J. 2012;33:1491–9.

    PubMed  Google Scholar 

  41. Chang YC, Hsu SY, Yang CC, et al. Enhanced protection against renal ischemia-reperfusion injury with combined melatonin and exendin-4 in a rodent model. Exp Biol Med (Maywood). 2016;241:1588–602.

    CAS  Google Scholar 

  42. Eid RA, Zaki MSA, Alaa Eldeen M, Alshehri MM, Shati AA, el-kott AF. Exendin-4 protects the hearts of rats from ischemia/reperfusion injury by boosting antioxidant levels and inhibition of JNK/p66 Shc/NADPH axis. Clin Exp Pharmacol Physiol. 2020a.

  43. Eid RA, Alharbi SA, El-Kott AF, et al. Exendin-4 ameliorates cardiac remodeling in experimentally induced myocardial infarction in rats by inhibiting PARP1/NF-κB Axis in A SIRT1-dependent mechanism. Cardiovasc Toxicol. 2020.

  44. Eid RA, Bin-Meferij MM, El-Kott AF, et al. Exendin-4 protects against myocardial ischemia-reperfusion injury by upregulation of SIRT1 and SIRT3 and activation of AMPK and subsequent deacylation of P53, PGC-1α, and FOXO1. J Cardiovasc Transl Res. 2020c.

  45. Bai J, Zhang N, Hua Y, Wang B, Ling L, Ferro A, et al. Metformin inhibits angiotensin ii-induced differentiation of cardiac fibroblasts into myofibroblasts. PLoS One. 2013;8:e72120.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun L, Liu C, Xu X, Ying Z, Maiseyeu A, Wang A, et al. Ambient fine particulate matter and ozone exposures induce inflammation in epicardial and perirenal adipose tissues in rats fed a high fructose diet. Part Fibre Toxicol. 2013;10:43.

    PubMed  PubMed Central  Google Scholar 

  47. Seo S, Lee M-S, Chang E, Shin Y, Oh S, Kim IH, et al. Rutin increases muscle mitochondrial biogenesis with AMPK activation in high-fat diet-induced obese rats. Nutrients. 2015;7:8152–69.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Yan N, Liu Y, Liu S, et al. Fluoride-induced neuron apoptosis and expressions of inflammatory factors by activating microglia in rat brain. Mol Neurobiol. 2015;53:4449–60.

    PubMed  Google Scholar 

  49. Tate M, Robinson E, Green BD, McDermott BJ, Grieve DJ. Exendin-4 attenuates adverse cardiac remodelling in streptozocin-induced diabetes via specific actions on infiltrating macrophages. Basic Res Cardiol. 2016;111:1.

    CAS  PubMed  Google Scholar 

  50. Lee KH, Cho H, Lee S, Woo JS, Cho BH, Kang JH, et al. Enhanced-autophagy by exenatide mitigates doxorubicin-induced cardiotoxicity. Int J Cardiol. 2017;232:40–7.

    PubMed  Google Scholar 

  51. Heikkinen PT, Nummela M, Leivonen S-K, et al. Hypoxia-activated Smad3-specific dephosphorylation by PP2A. J Biol Chem. 2009;285:3740–9.

    PubMed  PubMed Central  Google Scholar 

  52. Wang Y, Yang R, Gu J, Yin X, Jin N, Xie S, et al. Cross talk between PI3K-AKT-GSK-3β and PP2A pathways determines tau hyperphosphorylation. Neurobiol Aging. 2015;36:188–200.

    PubMed  Google Scholar 

  53. Chu D, Tan J, Xie S, Jin N, Yin X, Gong CX, et al. GSK-3β is dephosphorylated by PP2A in a Leu309 methylation-independent manner. J Alzheimers Dis. 2016;49:365–75.

    CAS  PubMed  Google Scholar 

  54. Li L, Fang C, Xu D, Xu Y, Fu H, Li J. Cardiomyocyte specific deletion of PP2A causes cardiac hypertrophy. Am J Transl Res. 2016;8:1769–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. DeGrande ST, Little SC, Nixon DJ, et al. Molecular mechanisms underlying cardiac protein phosphatase 2A regulation in heart. J Biol Chem. 2013;288:1032–46.

    CAS  PubMed  Google Scholar 

  56. Hund TJ, Wright PJ, Dun W, Snyder JS, Boyden PA, Mohler PJ. Regulation of the ankyrin-B-based targeting pathway following myocardial infarction. Cardiovasc Res. 2008;81:742–9.

    PubMed  PubMed Central  Google Scholar 

  57. Baggio LL, Yusta B, Mulvihill EE, et al. GLP-1 receptor expression within the human heart. Endocrinology. 2018;159:1570–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Ussher JR, Drucker DJ. Cardiovascular biology of the incretin system. Endocr Rev. 2012;33:187–215.

    CAS  PubMed  Google Scholar 

  59. Ussher JR, Drucker DJ. Cardiovascular actions of incretin-based therapies. Circ Res. 2014;114:1788–803.

    CAS  PubMed  Google Scholar 

  60. Pyke C, Knudsen LB. The glucagon-like peptide-1 receptor–or not? Endocrinology. 2013;154:4–8.

    CAS  PubMed  Google Scholar 

  61. Kim M, Platt MJ, Shibasaki T, Quaggin SE, Backx PH, Seino S, et al. GLP-1 receptor activation and Epac2 link atrial natriuretic peptide secretion to control of blood pressure. Nat Med. 2013;19:567–75.

    CAS  PubMed  Google Scholar 

  62. Moore-Morris T, Varrault A, Mangoni ME, le Digarcher A, Negre V, Dantec C, et al. Identification of potential pharmacological targets by analysis of the comprehensive G protein-coupled receptor repertoire in the four cardiac chambers. Mol Pharmacol. 2009;75:1108–16.

    CAS  PubMed  Google Scholar 

  63. Ang R, Mastitskaya S, Hosford PS, et al. Modulation of cardiac ventricular excitability by GLP-1 (glucagon-like peptide-1). Circ Arrhythm Electrophysiol. 2018;11:e006740.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lymperopoulos A, Wertz SL, Pollard CM, Desimine VL, Maning J, McCrink KA. Not all arrestins are created equal: therapeutic implications of the functional diversity of the β-arrestins in the heart. World J Cardiol. 2019;11:47–56.

    PubMed  PubMed Central  Google Scholar 

  65. Lymperopoulos A. Arrestins in the cardiovascular system: an update. Prog Mol Biol Transl Sci. 2018;159:27–57.

    CAS  PubMed  Google Scholar 

  66. Maguire JJ. Evidence for biased agonists and antagonists at the endothelin receptors. Life Sci. 2016;159:30–3.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Lei S, Clydesdale L, Dai A, Cai X, Feng Y, Yang D, et al. Two distinct domains of the glucagon-like peptide-1 receptor control peptide-mediated biased agonism. J Biol Chem. 2018;293(24):9370–87.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Gundry J, Glenn R, Alagesan P, Rajagopal S. A practical guide to approaching biased agonism at g protein coupled receptors. Front Neurosci. 2017;11:17.

    PubMed  PubMed Central  Google Scholar 

  69. Preedy MEJ. Cardiac cyclic nucleotide phosphodiesterases: roles and therapeutic potential in heart failure. Cardiovasc Drugs Ther. 2020;34:401–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Leineweber K, Böhm M, Heusch G. Cyclic adenosine monophosphate in acute myocardial infarction with heart failure: slayer or savior? Circulation. 2006;114:365–7.

    PubMed  Google Scholar 

  71. Bathgate-Siryk A, Dabul S, Pandya K, Walklett K, Rengo G, Cannavo A, et al. Negative impact of β-arrestin-1 on post-myocardial infarction heart failure via cardiac and adrenal-dependent neurohormonal mechanisms. Hypertension. 2014;63:404–12.

    CAS  PubMed  Google Scholar 

  72. McCrink KA, Maning J, Vu A, et al. β-Arrestin2 improves post-myocardial infarction heart failure via sarco (endo) plasmic reticulum Ca2+-ATPase-dependent positive inotropy in cardiomyocytes. Hypertension. 2017;70:972–81.

    CAS  PubMed  Google Scholar 

  73. O’Brien WT, Huang J, Buccafusca R, et al. Glycogen synthase kinase-3 is essential for β-arrestin-2 complex formation and lithium-sensitive behaviors in mice. J Clin Invest. 2011;121:3756–62.

    PubMed  PubMed Central  Google Scholar 

  74. Ishikawa K, Aguero J, Oh JG, et al. Increased stiffness is the major early abnormality in a pig model of severe aortic stenosis and predisposes to congestive heart failure in the absence of systolic dysfunction. J Am Heart Assoc. 2015;4:e001925.

    PubMed  PubMed Central  Google Scholar 

  75. Ishikawa K, Chemaly ER, Tilemann L, Fish K, Ladage D, Aguero J, et al. Assessing left ventricular systolic dysfunction after myocardial infarction: are ejection fraction and dP/dt (max) complementary or redundant? Am J Physiol Heart Circ Physiol. 2012;302:H1423–8.

    CAS  PubMed  Google Scholar 

Download references

Funding

All authors extend their appreciation to the deanship of Scientific Research at King Khalid University, Abha, KSA, for funding this work through the research group program under grant number (R.G.P.1/46/40). Also, this research was funded by the Deanship of Scientific Research at Princess Nourah bint Abdulrahman University through the Fast-track Research Funding Program.

Author information

Authors and Affiliations

Authors

Contributions

Attalla El-kott obtained the fund. Refaat Eid, Attalla El-kott, Mahmoud Alkhateeb, Samy M Eleawa, and Abdullah Shatoor designed the experimental procedure and drafted the proposal. Mahmoud Alkhateeb established the animal model and collected samples and blood. Refaat Eid, Attalla Farag El-kott, Mohamed Samir Ahmed Zaki, Khalid Awaji, Mubarak Al-Shraim, Mashael Mohammed Bin-Meferij, Fahmy El-Sayed, and Muhammad Alaa Eldeen performed the biochemical analysis and histopathology and electron microscopy studies. Refaat Eid, Attalla El-kott, Mahmoud Alkhateeb, Samy M Eleawa, Abdullah Shatoor, and Mohammad Adnan Khalil drafted and revised several versions of the manuscript.

Corresponding author

Correspondence to Refaat A. Eid.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(DOCX 27.7 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eid, R.A., Khalil, M.A., Alkhateeb, M.A. et al. Exendin-4 Attenuates Remodeling in the Remote Myocardium of Rats After an Acute Myocardial Infarction by Activating β-Arrestin-2, Protein Phosphatase 2A, and Glycogen Synthase Kinase-3 and Inhibiting β-Catenin. Cardiovasc Drugs Ther 35, 1095–1110 (2021). https://doi.org/10.1007/s10557-020-07006-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10557-020-07006-9

Keywords

Navigation