Skip to main content
Log in

Copper-Catalyzed Dehydration of Primary Amides to Nitriles

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In the present study we introduce a copper-catalyzed protocol for the dehydration of primary amides to their corresponding nitriles applying N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA) as silylation reagent. For that purpose investigations of various reaction parameters (copper source, solvent, temperature, MSTFA and copper loading) have been carried out to find suitable reaction conditions. Simple copper(I) chloride (2.5 mol%) and MSTFA (2.0 equiv) in toluene allow for the straightforward synthesis of a variety of nitriles (15 examples).

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2

Similar content being viewed by others

References

  1. Larock RC (2010) Comprehensive organic transformations, Wiley

  2. Kent RE, McElvain SM (1945) Org Synth 25:61

    CAS  Google Scholar 

  3. Mowry DT (1948) Chem Rev 42:189–283

    Article  CAS  Google Scholar 

  4. Reisner DB, Horning EC (1950) Org Synth 30:22

    CAS  Google Scholar 

  5. Rickborn B, Jensen FR (1962) J Org Chem 27:4608–4610

    Article  CAS  Google Scholar 

  6. Krynitsky JA, Carhart HW (1952) Org Synth 32:65

    CAS  Google Scholar 

  7. Lehnert W (1971) Tetrahedron Lett 19:1501–1504

    Article  Google Scholar 

  8. Ellzey SE, Mack CH, Connick WJ (1967) J Org Chem 32:846–847

    Article  CAS  Google Scholar 

  9. Nakajima N, Saito M, Ubukata M (2002) Tetrahedron 58:3561–3577

    Article  CAS  Google Scholar 

  10. Sugimoto O, Mori M, Moriya K, Tanji KI (2001) Helv Chim Acta 84:1112–1118

    Article  CAS  Google Scholar 

  11. Hiegel GA, Ramirez J, Barr RK (1999) Synth Commun 29:1415–1419

    Article  CAS  Google Scholar 

  12. Bose DS, Goud PR (1999) Tetrahedron Lett 40:747–748

    Article  CAS  Google Scholar 

  13. Kim S, Yi KY (1986) Tetrahedron Lett 27:1925–1928

    Article  CAS  Google Scholar 

  14. Olah GA, Narang SC, Fung AP, Gupta BGB (1980) Synthesis 12:657–658

    Google Scholar 

  15. Campagna F, Carotti A, Casini G (1977) Tetrahedron Lett 33:1813–1816

    Article  Google Scholar 

  16. Hanada S, Motoyama Y, Nagashima H (2008) Eur J Org Chem 24:4097–4100

    Article  Google Scholar 

  17. Watanabe Y, Okuida Z, Tsuji Y (1990) J Mol Catal 58:87–94

    Article  CAS  Google Scholar 

  18. Blum J, Fisher A (1970) Tetrahedron Lett 23:1963–1966

    Article  Google Scholar 

  19. Blum J, Fisher A, Greener E (1973) Tetrahedron 29:1073–1081

    Article  CAS  Google Scholar 

  20. Campbell JA, McDougald G, McNab H, Rees LVC, Tyas RG (2007) Synthesis 20:3179–3184

    Google Scholar 

  21. Maffioli SI, Marzorati E, Marazzi A (2005) Org Lett 7:5237–5239

    Article  CAS  Google Scholar 

  22. Sueoka S, Mitsudome T, Mizugaki T, Jitsukawa K, Kaneda K (2010) Chem Comm 46:8243–8245

    Article  CAS  Google Scholar 

  23. Ishihara K, Furuya Y, Yamamoto H (2002) Angew Chem Int Ed 41:2983–2986

    Article  CAS  Google Scholar 

  24. Furuya Y, Ishihara K, Yamamoto H (2007) Bull Chem Soc Jpn 80:400–406

    Article  CAS  Google Scholar 

  25. Enthaler S (2011) Chem Eu J. doi: 10.1002/chem.201101478

  26. Zhou S, Junge K, Addis D, Das S, Beller M (2009) Chem Commun 32:4883–4885

    Google Scholar 

  27. Enthaler S, Inoue S (2011) Chem. Asian J. doi: 10.1002/asia.201100493

  28. Enthaler S (2011) Eur J Org Chem. doi: 10.1002/ejoc.201100754

  29. Enthaler S, Weidauer M (2011) Catal Lett 141:833–838

    Article  CAS  Google Scholar 

  30. Yang C, Williams JM (2004) Org Lett 6:2837–2840

    Article  CAS  Google Scholar 

  31. Zhou S, Junge K, Addis D, Das S, Beller M (2009) Org Lett 11:2461–2464

    Article  CAS  Google Scholar 

  32. Hatsuda M, Seki M (2005) Tetrahedron 61:9908–9917

    Article  CAS  Google Scholar 

  33. Anbarasan P, Neumann H, Beller M (2011) Angew Chem Int Ed 50:519–522

    Article  CAS  Google Scholar 

  34. Riina K, Leadbeater A, Leadbeater NE (2003) J Org Chem 68:9122–9125

    Article  Google Scholar 

  35. Zhang G, Zhang L, Hu M, Cheng J (2011) Adv Synth Catal 353(2–3):291–294

    Google Scholar 

  36. Yu H, Richey RN, Miller WD, Xu J, May SA (2011) J Org Chem 76:665–668

    Article  CAS  Google Scholar 

  37. Glover SA, Beckwith ALJ (1987) Australian J Chem 40:701–709

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Financial support from the Cluster of Excellence “Unifying Concepts in Catalysis” (funded by the Deutsche Forschungsgemeinschaft and administered by the Technische Universität Berlin) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Enthaler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Enthaler, S., Weidauer, M. Copper-Catalyzed Dehydration of Primary Amides to Nitriles. Catal Lett 141, 1079–1085 (2011). https://doi.org/10.1007/s10562-011-0660-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-011-0660-9

Keywords

Navigation