Skip to main content
Log in

Esterification of Levulinic Acid to n-Butyl Levulinate Over Various Acidic Zeolites

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Levulinic acid (LA) has been recognized as a versatile building block for the synthesis of various organic chemicals as it contains ketone and carboxylic functional groups. Levulinate esters are important chemical feedstocks having potential applications either in flavouring and fragrance industries or biodiesel as blending component. The present work focuses on the synthesis of n-butyl levulinate by esterification of LA with n-butanol using various small and large pore zeolites. The preferential order to yield n-butyl levulinate was found to be: H-BEA > H-Y > H-ZSM-5 > H-MOR. Further, a study for optimizing the reaction conditions such as acid to n-butanol molar ratio, reaction time and catalyst concentration has been described. Under optimized reaction conditions, zeolite H-BEA has been found as most efficient catalyst with 82.2 % LA conversion and 100 % selectivity of n-butyl levulinate.

Graphical Abstract

Scheme: Zeolite catalyzed esterification of levulinic acid

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Asif M, Muneer T (2007) Renew Sustain Energy Rev 11:1388

    Article  Google Scholar 

  2. Karl TR, Melillo JM, Peterson TC (2009) Global climate change impacts in the United States. Cambridge University Press, United Kingdom

    Google Scholar 

  3. B. Kamm, M. Kamm, P.R. Gruber, S. Kromus (2006) In: B. Kamm, P.R. Gruber, M. Kamm (eds) Biorefinery Systems—An Overview Biorefineries–Industrial Processes and Products: Status Quo and Future Directions, vol 1(Wiley-VCH, Weinheim)

  4. B. Girisuta, Theses: Levulinic acid from lignocellulosic biomass. University of Groningen, ISBN 978-90-367-3229-1, 2007

  5. Leonard RH (1956) J Ind Eng Chem 48:1331

    Article  CAS  Google Scholar 

  6. Kitano M, Tanimoto F, Okabayashi M (1975) Chem Eco Eng Rev 7:25

    CAS  Google Scholar 

  7. Sen SM, Gürbüz EI, Wettstein SG, Alonso D, Dumesic JA, Maravelias CT, Henao CA (2012) Green Chem 14:3289

    Article  CAS  Google Scholar 

  8. Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL (2000) Resour Conserv Recycl 28:227

    Article  Google Scholar 

  9. Thomas JJ, Barile GR (1985) Bio Waste 8:1461

    Google Scholar 

  10. V. Ghorpade, M.A. Hanna, in: Cereal-Novel Uses and Processes, eds. Campbell GM, Webb C, Mckee SL (New York: Plenum press 49, 1997)

  11. Bozell JJ, Moens L, Elliott DC, Wang Y, Neuenscwander GG, Fitzpatrick SW, Bilski RJ, Jarnefeld JL (2000) Resour Conserv Recycl 28(3–4):227

    Article  Google Scholar 

  12. Pasquale G, Vázquez P, Romanelli G, Baronetti G (2012) Catal Commun 18:115

    Article  CAS  Google Scholar 

  13. Bart HJ, Reidetschlager J, Schatka K, Lehmann A (1994) Ind Eng Chem Res 33(1):21

    Article  CAS  Google Scholar 

  14. Ayoub P, WO Patent (2005) 2005070867

  15. Bader AR, Kontowicz AD (1953) J Am Chem Soc 75:5416

    Article  CAS  Google Scholar 

  16. Olah GA, Welch J (1974) Synthesis 1974(9):652

    Article  Google Scholar 

  17. Corma A, Garcia H (2003) Chem Rev 103:4307

    Article  CAS  Google Scholar 

  18. Ledneczki M, Daranyi F, Fulop F, Molnar A (2005) Catal Today 100:437

    Article  CAS  Google Scholar 

  19. Dharne S, Bokade VV (2011) J Nat Gas Chem 20(1):18

    Article  CAS  Google Scholar 

  20. Sawant DP, Vinu A, Justus J, Srinivasu P, Halligudi SB (2007) J Mol Catal A 276(1–2):150

    Article  CAS  Google Scholar 

  21. Gimenez J, Costa J, Cervera S (1987) Ind Chem Eng Res 26(2):198

    Article  CAS  Google Scholar 

  22. Ram Reddy P, Subba Rao KV, Subrahmanyam M (1998) Catal Lett 56:155

  23. Corma A, Garcia H (1997) Catal Today 38:257

    Article  CAS  Google Scholar 

  24. Sheldon RA, Downing RS (1999) Appl Catal A 189:163

    Article  CAS  Google Scholar 

  25. Skeels GW, Flanigen EM (1998). USA Patent 5,744,673

  26. Jansen J, Creighton E, Njo SL, van Koningsveld H, van Bekkum H (1997) Catal Today 38:205

    Article  CAS  Google Scholar 

  27. Yeh CY, Xu J, Angevine PJ (2008). USA Patent 7, 371, 910

    Google Scholar 

  28. Joshi R, Patel H, Chudasama U (2008) Ind J Chem Tech 15:238

    CAS  Google Scholar 

  29. Hans JB, Johann R, Klemens S, Andreas L (1994) Ind Eng Chem Res 33:21

    Article  Google Scholar 

  30. Mistry S, Joshi R, Sahoo S, Maheria K (2011) Catal Lett 141(10):1541

    Article  CAS  Google Scholar 

  31. Das J, Parida KM (2007) J Mol Catal A 264:248

    Article  CAS  Google Scholar 

  32. Luís AS, Do N, Laura MZ, Titoa RS, Angélicab, Carlos EF, Da C, José R, Zamiana, GN, Da RF (2011) Appl Catal B: Environmental 101:495

  33. Kiss AA, Dimian AC, Rothenberg G (2006) Adv Synth Catal 348:75

    Article  CAS  Google Scholar 

  34. Yadav GD, Borkar I (2008) Ind Eng Chem Res 47:3358

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors thank Canadian Research Chair Program, NSERC, for financial support. Authors would also like to thank Sud-Chemie India Pvt. Ltd., Vadodara, Gujarat, India, for providing samples of zeolites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Dalai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maheria, K.C., Kozinski, J. & Dalai, A. Esterification of Levulinic Acid to n-Butyl Levulinate Over Various Acidic Zeolites. Catal Lett 143, 1220–1225 (2013). https://doi.org/10.1007/s10562-013-1041-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-013-1041-3

Keywords

Navigation