Skip to main content

Advertisement

Log in

Photochemical Preparation of Anatase Titania Supported Gold Catalyst for Ethanol Synthesis from CO2 Hydrogenation

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Hydrogenation of the greenhouse gas CO2 to higher alcohols through catalysis holds great promise for resource transformation in low-carbon energy supply system, but the efficient and selective synthesis of value-added ethanol by a robust heterogeneous catalyst under relatively mild conditions remains a major challenge. Based on our previous work on Au/TiO2 as an active and selective catalyst for ethanol synthesis, we report here that a facile photochemical route can be used for the preparation of anatase TiO2 supported gold catalyst (Au/a-TiO2) for efficient hydrogenation of CO2. Compared with the conventional deposition-precipitation method requiring strong brønsted base and flammable H2 gas in the complicated and time-consuming process, the photochemical way for the facile preparation of supported gold catalyst shows the advantages of green and energy-saving. Of significant importance is that an impressive space-time-yield of 869.3 mmol gAu −1 h−1, high selectivity, and excellent stability can be readily attained at 200 °C and total pressure of 6 MPa. The effects of irradiation time, solvent, and metal loading or Au particle size on ethanol synthesis are systematically investigated.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang W, Wang S, Ma X, Gong J (2011) Chem Soc Rev 40:3703–3727

    Article  CAS  Google Scholar 

  2. Aresta M, Dibenedetto A, Angelini A (2014) Chem Rev 114:1709–1742

    Article  CAS  Google Scholar 

  3. Bi QY, Lin JD, Liu YM, He HY, Huang FQ, Cao Y (2016) Angew Chem Int Ed 55:11849–11853

    Article  CAS  Google Scholar 

  4. Bi QY, Lin JD, Liu YM, Du XL, Wang JQ, He HY, Cao Y (2014) Angew Chem Int Ed 53:13583–13587

    Article  CAS  Google Scholar 

  5. Goeppert A, Czaun M, Jones JP, Prakash GKS, Olah GA (2014) Chem Soc Rev 43:7995–8048

    Article  CAS  Google Scholar 

  6. Luk HT, Mondelli C, Ferré DC, Stewart JA, Pérez-Ramírez J (2017) Chem Soc Rev 46:1358–1426

    Article  CAS  Google Scholar 

  7. Sun X, Zhu Q, Kang X, Liu H, Qian Q, Zhang Z, Han B (2016) Angew Chem Int Ed 55:6771–6775

    Article  CAS  Google Scholar 

  8. Spivey JJ, Egbebi A (2007) Chem Soc Rev 36:1514–1528

    Article  CAS  Google Scholar 

  9. Sun D, Sato S, Ueda W, Primo A, Garcia H, Corma A (2016) Green Chem 18:2579–2597

    Article  CAS  Google Scholar 

  10. Braunstein P, Matt D, Nobel D (1988) Chem Rev 88:747–764

    Article  CAS  Google Scholar 

  11. Qian Q, Cui M, He Z, Wu C, Zhu Q, Zhang Z, Ma J, Yang G, Zhang J, Han B (2015) Chem Sci 6:5685–5689

    Article  CAS  Google Scholar 

  12. Cui M, Qian Q, He Z, Zhang Z, Ma J, Wu T, Yang G, Han B (2016) Chem Sci 7:5200–5205

    Article  CAS  Google Scholar 

  13. Kusama H, Okabe K, Sayama K, Arakawa H (1996) Catal Today 28:261–266

    Article  CAS  Google Scholar 

  14. Nieskens DLS, Ferrari D, Liu Y, Jr RK (2011) Catal Commun 14:111–113

    Article  CAS  Google Scholar 

  15. Kishida M, Yamada K, Nagata H, Wakabayashi K (1994) Chem Lett 23:555–556

    Article  Google Scholar 

  16. Li S, Guo H, Luo C, Zhang H, Xiong L, Chen X, Ma L (2013) Catal Lett 143:345–355

    Article  CAS  Google Scholar 

  17. Kieffer R, Fujiwara M, Udron L, Souma Y (1997) Catal Today 36:15–24

    Article  CAS  Google Scholar 

  18. He Z, Qian Q, Ma J, Meng Q, Zhou H, Song J, Liu Z, Han B (2016) Angew Chem Int Ed 55:737–741

    Article  CAS  Google Scholar 

  19. Bai S, Shao Q, Wang P, Dai Q, Wang X, Huang X (2017) J Am Chem Soc 139:6827–6830

    Article  CAS  Google Scholar 

  20. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Chem Lett 16:405–408

    Article  Google Scholar 

  21. Johnston P, Carthey N, Hutchings GJ (2015) J Am Chem Soc 137:14548–14557

    Article  CAS  Google Scholar 

  22. Wittstock A, Zielasek V, Biener J, Friend CM, Bäumer M (2010) Science 327:319–322

    Article  CAS  Google Scholar 

  23. Bi QY, Du XL, Liu YM, Cao Y, He HY, Fan KN (2012) J Am Chem Soc 134:8926–8933

    Article  CAS  Google Scholar 

  24. Liu X, He L, Liu YM, Cao Y (2014) Acc Chem Res 47:793–804

    Article  CAS  Google Scholar 

  25. Preti D, Resta C, Squarcialupi S, Fachinetti G (2011) Angew Chem Int Ed 50:12551–12554

    Article  CAS  Google Scholar 

  26. Wang D, Bi Q, Yin G, Zhao W, Huang F, Xie X, Jiang M (2016) Chem Commun 52:14226–14229

    Article  CAS  Google Scholar 

  27. Liu L, Zhao H, Andino JM, Li Y (2012) ACS Catal 2:1817–1828

    Article  CAS  Google Scholar 

  28. Oros-Ruiz S, Pedraza-Avella JA, Guzmán C, Quintana M, Moctezuma E, del Angel G, Gómez R, Pérez E (2011) Top Catal 54:519–526

    Article  CAS  Google Scholar 

  29. Bond GC, Thompson DT (1999) Catal Rev Sci Eng 41:319–388

    Article  CAS  Google Scholar 

  30. Tang H, Liu F, Wei J, Qiao B, Zhao K, Su Y, Jin C, Li L, Liu J, Wang J, Zhang T (2016) Angew Chem Int Ed 55:10606–10611

    Article  CAS  Google Scholar 

  31. Yao X, Zhao R, Chen L, Du J, Tao C, Yang F, Dong L (2017) Appl Catal B 208:82–93

    Article  CAS  Google Scholar 

  32. Bi QY, Lin JD, Liu YM, He HY, Huang FQ, Cao Y (2016) J Power Sources 328:463–471

    Article  CAS  Google Scholar 

  33. Huang TJ, Lin HJ, Yu TC (2005) Catal Lett 105:239–247

    Article  CAS  Google Scholar 

  34. Strunk J, Kähler K, Xia X, Comotti M, Schüth F, Reinecke T, Muhler M (2009) Appl Catal A 359:121–128

    Article  CAS  Google Scholar 

  35. Yang S, Wang Y, Wang Q, Zhang R, Ding B (2007) Colloids Surf A 301:174–183

    Article  CAS  Google Scholar 

  36. Hidalgo MC, Maicu M, Navío JA, Colón G (2009) J Phys Chem C 113:12840–12847

    Article  CAS  Google Scholar 

  37. Kenens B, Chamtouri M, Aubert R, Miyakawa K, Hayasaka Y, Naiki H, Watanabe H, Inose T, Fujita Y, Lu G, Masuhara A, Uji-i H (2016) RSC Adv 6:97464–97468

    Article  CAS  Google Scholar 

  38. Fang W, Chen J, Zhang Q, Deng W, Wang Y (2011) Chem Eur J 17:1247–1256

    Article  CAS  Google Scholar 

  39. Liu SS, Liu X, Yu L, Liu YM, He HY, Cao Y (2014) Green Chem 16:4162–4169

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2016YFB0901600), the NSF of China (61376056 and 51502331), and the STC of Shanghai (14520722000, 16ZR1440400, and 16JC1401700).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qingyuan Bi or Fuqiang Huang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4690 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Bi, Q., Yin, G. et al. Photochemical Preparation of Anatase Titania Supported Gold Catalyst for Ethanol Synthesis from CO2 Hydrogenation. Catal Lett 148, 11–22 (2018). https://doi.org/10.1007/s10562-017-2192-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-017-2192-4

Keywords

Navigation