Skip to main content
Log in

Effect of Preparation Method on the Structure and Catalytic Performance of CuZnO Catalyst for Low Temperature Syngas Hydrogenation in Liquid Phase

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

CuZnO catalysts were prepared by different methods, characterized by applying a combination of techniques, and the effect of preparation method on the structure and the catalytic performance for syngas hydrogenation at low temperature in liquid phase was investigated. The results showed that due to the difference of the interaction between Cu and Zn, the preparation method greatly affected the crystallinity of CuZnO. The crystallinity of CuZnO had a direct relation with the CO adsorption property. The total CO adsorption amount determined the catalytic activity, the weak adsorption of CO accounted for the methanol synthesis, while the strong adsorption of CO accounted for the ethanol synthesis. CuZnO prepared by the homogeneous precipitation with the lowest crystallinity exhibited the highest total carbon conversion of 68.6% with the methanol selectivity of 84.9%, while CuZnO prepared by the sol gel with the highest crystallinity exhibited the highest ethanol selectivity of 47.6%.

Graphical Abstract

The preparation method of CuZnO had a significant effect on the CO adsorption property and then resulted in a substantial modification in the product distribution for the syngas hydrogenation at low temperature in liquid phase. The catalytic activity was determined by the total amount of CO adsorption, the weak CO adsorption accounted for the methanol synthesis and the strong CO adsorption accounted for the ethanol synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Spivey JJ, Egbebia A (2007) Heterogeneous catalytic synthesis of ethanol from biomass-derived syngas. Chem Soc Rev 36:1514–1528

    Article  CAS  Google Scholar 

  2. Wang F, Liu YW, Gan YH, Ding W, Fang WP, Yang YQ (2013) Study on the modification of Cu-based catalysts with cupric silicate for methanol synthesis from synthesis gas. Fuel Process Technol 110:190–196

    Article  CAS  Google Scholar 

  3. Deluga GA, Salge JR, Schmidt LD (2004) Renewable hydrogen from ethanol by autothermal reforming. Science 303:993–997

    Article  CAS  Google Scholar 

  4. Jorge MB, Anne GC, Andrei YK (2014) Effects of metal promotion on the performance of CuZnAl catalysts for alcohol synthesis. ChemCatChem 6:1788–1793

    Article  Google Scholar 

  5. Lu YW, Yu F, Hu J, Liu J (2012) Catalytic conversion of syngas to mixed alcohols over Zn-Mn promoted Cu-Fe based catalyst. Appl Catal A 429:48–58

    Article  Google Scholar 

  6. Lin M, Fang K, Li D, Sun Y (2008) CO hydrogenation to mixed alcohols over co-precipitated Cu-Fe catalysts. Catal Commun 9:1869–1873

    Article  CAS  Google Scholar 

  7. Subramani V, Gangwal SK (2008) A review of recent literature to search for an efficient catalytic process for the conversion of syngas to ethanol. Energy Fuel 22:814–839

    Article  CAS  Google Scholar 

  8. Mo XH, Tsai YT, Gao J, Mao DS, James GGJ (2012) Effect of component interaction on the activity of Co/CuZnO for CO hydrogenation. J Catal 285:208–215

    Article  CAS  Google Scholar 

  9. Surisetty VR, Dalai AK, Kozinski J (2011) Alcohols as alternative fuels: an overview. Appl Catal A 404:1–11

    CAS  Google Scholar 

  10. Sun J, Cai QX, Wan Y, Wan SL, Wang L, Lin JD, Mei DH, Wang Y (2016) Promotional effects of cesium promoter on higher alcohol synthesis from syngas over cesium-promoted Cu/ZnO/Al2O3 catalysts. ACS Catal 6:5771–5785

    Article  CAS  Google Scholar 

  11. Wang N, Fang K, Jiang D, Li D, Sun Y (2010) Iron carbide promoted K/β-Mo2C for higher alcohols synthesis. Catal Today 158:241–245

    Article  CAS  Google Scholar 

  12. Christensen JM, Mortensen PM, Trane R, Jensen PA, Jensen AD (2009) Effects of H2S and process conditions in the synthesis of mixed alcohols from syngas over alkali promoted cobalt-molybdenum sulfide. Appl Catal A 366:29–43

    Article  CAS  Google Scholar 

  13. Liu GL, Niu T, Cao A, Geng YX, Zhang Y, Liu Y (2016) The deactivation of Cu-Co alloy nanoparticles supported on ZrO2 for higher alcohols synthesis from syngas. Fuel 176:1–10

    Article  Google Scholar 

  14. An Z, Ning X, He J (2017) Ga-promoted CO insertion and C-C coupling on Co catalysts for the synthesis of ethanol and higher alcohols from syngas. J Catal 356:157–164

    Article  CAS  Google Scholar 

  15. Ding MY, Ma LL, Zhang Q, Wang CG, Zhang WN, Wang TJ (2017) Enhancement of conversion from bio-syngas to higher alcohols fuels over K-promoted Cu-Fe bimodal pore catalysts. Fuel Process Technol 159:436–441

    Article  CAS  Google Scholar 

  16. Tsubaki N, Zeng JQ, Yoneyama Y, Fujimoto K (2001) Continuous synthesis process of methanol at low temperature from syngas using alcohol promoters. Catal Commun 2:213–217

    Article  CAS  Google Scholar 

  17. Graaf GH, Sijtsema P, Stamhuis EJ, Oostem G (1986) Chemical equilibria in methanol synthesis. Chem Eng Sci 41:2883–2890

    Article  CAS  Google Scholar 

  18. Zeng JQ, Fujimoto K, Tsubaki N (2002) A new low-temperature synthesis route of methanol: catalytic effect of the alcoholic solvent. Energy Fuel 16:83–86

    Article  CAS  Google Scholar 

  19. Herman RG, Smimmons GW, Klier K (1981) Catalytic synthesis of methanol from CO/H2 III: the role of alumina and ceria in the Cu/ZnO system. Stud Surf Sci Catal 7:475–489

    Article  CAS  Google Scholar 

  20. Ahoba-Sam C, Olsbye U, Jens KJ (2018) Low temperature methanol synthesis catalyzed by copper nanoparticles. Catal Today 299:112–119

    Article  CAS  Google Scholar 

  21. Zhang K, Song HS, Sun DK, Li SF, Yang XG, Zhao YL, Huang Z, Wu YT (2003) Low-temperature methanol synthesis in a circulating slurry bubble reactor. Fuel 82:233–239

    Article  CAS  Google Scholar 

  22. Reubroycharoen P, Vitidsant T, Yoneyama Y, Tsubaki N (2004) Development of a new low-temperature methanol synthesis process. Catal Today 89:447–454

    Article  CAS  Google Scholar 

  23. Fan RG, Kyodo M, Tan L, Peng XB, Yang GH, Yoneyama Y, Yang RQ, Zhang QD, Tsubaki N (2017) Preparation and application of Cu/ZnO catalyst by urea hydrolysis method for low-temperature methanol synthesis from syngas. Fuel Process Technol 167:69–77

    Article  CAS  Google Scholar 

  24. Liu H, Chen T, Yang G, Wang GY (2017) Investigation of active center of Cu-based catalyst for low temperature methanol synthesis from syngas in liquid phase: the contribution of Cu+ and Cu0. Chemistryselect 2:8000–8007

    Article  CAS  Google Scholar 

  25. Tsubaki N, Ito M, Fujimoto K (2001) A new method of low-temperature methanol synthesis. J Catal 197:224–227

    Article  CAS  Google Scholar 

  26. Ohyama S (2003) Low-temperature methanol synthesis in catalytic systems composed of copper-based oxides and alkali alkoxides in liquid media: effects of reaction variables on catalytic performance. Topics Catal 22:337–343

    Article  CAS  Google Scholar 

  27. Lee ES, Aika K (1999) Low-temperature methanol synthesis in liquid-phase with a Raney Nickel-alkoxide system: effect of Raney Nickel pretreatment and reaction conditions. J Mol Catal A 141:241–248

    Article  CAS  Google Scholar 

  28. Palekar VM. Jung H, Tierney JW, Wender I (1993) Alkali compounds and copper chromite as low-temperature slurry phase methanol catalysts. Appl Catal A 103:105–122

    Article  CAS  Google Scholar 

  29. Yang R, Fu Y, Zhang Y, Tsubaki N (2004) In situ DRIFT study of low-temperature methanol synthesis mechanism on Cu/ZnO catalysts from CO2-containing syngas using ethanol promoter. J Catal 228:23–35

    Article  CAS  Google Scholar 

  30. Chu W, Zhang T, He C, Tang Y (2002) Low-temperature methanol synthesis (LTMS) in liquid phase on novel copper-based catalysts. Catal Lett 79:129–132

    Article  CAS  Google Scholar 

  31. Gormley RJ, Rao VHS, Soong Y, Micheli E (1992) Methyl formate hydrogenolysis for low-temperature methanol synthesis. Appl Catal A 87:81–101

    Article  CAS  Google Scholar 

  32. Zhao TS, Zhang K, Chen XR, Ma QX, Tsubaki N (2010) A novel low-temperature methanol synthesis method from CO/H2/CO2 based on the synergistic effect between solid catalyst and homogeneous catalyst. Catal Today 149:98–104

    Article  CAS  Google Scholar 

  33. Yang RQ, Zhang Y, Iwama Y, Tsubaki N (2005) Mechanistic study of a new low-temperature methanol synthesis on Cu/MgO catalysts. Appl Catal A 288:126–133

    Article  CAS  Google Scholar 

  34. Choi Y, Futagami K, Fujitami T, Nakamura J (2001) The role of ZnO in Cu/ZnO methanol synthesis catalysts-morphology effect or active site model. Appl Catal A 208:163–167

    Article  CAS  Google Scholar 

  35. Fujitani T, Nakamura J (1998) The effect of ZnO in methanol synthesis catalysts on Cu dispersion and the specific activity. Catal Lett 56:119–124

    Article  CAS  Google Scholar 

  36. Grunwaldt JD, Molenbroek AM, Topsoe NY, Clausen BS (2000) In situ investigations of structural changes in Cu/ZnO catalysts. J Catal 194:452–460

    Article  CAS  Google Scholar 

  37. Behrens M, Studt F, Kasatkin I, K_hl S, H_cecker M, Abild-Pedersen F, Zander S, Girgsdies F, Kurr P, Kniep BL, Tovar M, Fischer RW, Norskov JK, Schlcgl R (2012) The active site of methanol synthesis over Cu/ZnO/Al2O3 industrial catalysts. Science 336:893–897

    Article  CAS  Google Scholar 

  38. Nakamura J, Nakamura I, Uchijima T, Kanai Y, Watanabe T, Saito N, Fujitani T (1996) A surface science investigation of methanol synthesis over a Zn-deposited polycrystalline Cu surface. J Catal 160:65–67

    Article  CAS  Google Scholar 

  39. Greeley J, Gokhale AA, Kreuser J, Dumesic JA, Topsoe H, Topsoe NY, Mavrikakis M (2003) CO vibrational frequencies on methanol synthesis catalysts: a DFT study. J Catal 213:63–72

    Article  CAS  Google Scholar 

  40. Poels EK, Brands DS (2000) Modification of Cu/ZnO/SiO2 catalysts by high temperature reduction. Appl Catal A 191:83–96

    Article  CAS  Google Scholar 

  41. Johnston P, Hutchings GJ, Coville NJ, Finch KP, Moss JR (1999) CO hydrogenation using supported iron carbonyl complexes. Appl Catal A 186:245–253

    Article  CAS  Google Scholar 

  42. Herman RG (2000) Advances in catalytic synthesis and utilization of higher alcohols. Catal Today 55:233–245

    Article  CAS  Google Scholar 

  43. Mahdavi V, Peyrovi MH (2006) Synthesis of C1-C6 alcohols over copper/cobalt catalysts: investigation of the influence of preparative procedures on the activity and selectivity of Cu-Co2O3/ZnO, Al2O3 catalyst. Catal Commun 7:542–549

    Article  CAS  Google Scholar 

  44. Tien-Thao N, Zahedi-Niaki MH, Alamdari H, Kaliaguine S (2007) Conversion of syngas to higher alcohols over nanosized LaCo0.7Cu0.3O3 perovskite precursors. Appl Catal A 326:152–163

    Article  CAS  Google Scholar 

  45. Chaplle A, Yaacob MH, Pasquet I, Presmanes L, Barnabe A, Tailhades P, Plessis JD, Kalantar-zadeh K (2011) Structural and gas-sensing properties of CuO-CuxFe3–xO4 nanostructured thin films. Sens Actuator B 153(1):117–124

    Article  Google Scholar 

  46. Velu S, Suzuki K, Gopinath CS, Yoshida H, Hattori T (2002) XPS, XANES and EXAFS investigations of CuO/ZnO/Al2O3/ZrO2 mixed oxide catalysts. Phys Chem Chem Phys 4:1990–1999

    Article  CAS  Google Scholar 

  47. Wallbank B, Main IG, Johnson CE (1974) 2p and 2s shake-up satellites in solid compounds of 3d ions. J Electron Spectrosc 5:259–266

    Article  CAS  Google Scholar 

  48. Kim KS (1974) Charge transfer transition accompanying X-ray photoionization in transition-metal compounds. J Electron Spectrosc 3:217–226

    Article  CAS  Google Scholar 

  49. Mulligan RF, Iliadis AA, Kofinas P (2003) Synthesis and characterization of ZnO nanostructures templated using diblock copolymers. J Appl Polym Sci 89:1058–1061

    Article  CAS  Google Scholar 

  50. Liang MS, Kang WK, Xie KC (2009) Comparison of reduction behavior of Fe2O3, ZnO and ZnFe2O4 by TPR technique. J Nat Gas Chem 18:110–113

    Article  CAS  Google Scholar 

  51. Melian-Cabrera I, Lopez Granados M, Fierro JLG (2002) Pd-modified Cu-Zn catalysts for methanol synthesis from CO2/H2 mixtures: catalytic structures and performance. J Catal 210:285–294

    Article  CAS  Google Scholar 

  52. Guo HJ, Li SG, Peng F, Zhang HR, Xiong L, Huang C, Wang C, Chen XD (2015) Roles investigation of promoters in K/Cu-Zn catalyst and higher alcohols synthesis from CO2 hydrogenation over a novel two-stage bed catalyst combination system. Catal Lett 145:620–630

    Article  CAS  Google Scholar 

  53. Kieger S, Delahay G, Coq B, Neveu B (1999) Selective catalytic reduction of nitric oxide by ammonia over Cu-FAU catalysts in oxygen-rich atmosphere. J Catal 183:267–280

    Article  CAS  Google Scholar 

  54. Spencer MS (1999) The role of zinc oxide in Cu/ZnO catalysts for methanol synthesis and the water-gas shift reaction. Top Catal 8:259–266

    Article  CAS  Google Scholar 

  55. van Herwijnen T, de Jong WA (1974) Brass formation in a copper/zinc oxide CO shift catalyst. J Catal 34:209–214

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Chen, T. & Wang, G. Effect of Preparation Method on the Structure and Catalytic Performance of CuZnO Catalyst for Low Temperature Syngas Hydrogenation in Liquid Phase. Catal Lett 148, 1462–1471 (2018). https://doi.org/10.1007/s10562-018-2328-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2328-1

Keywords

Navigation