Skip to main content
Log in

Effect of Alumina Modification on the Reducibility of Co3O4 Crystallites Studied on Inverse-Model Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In order to establish the effect of alumina modification and calcination temperature on the reducibility of cobalt oxide, alumina-modified cobalt oxide crystallites containing less than 2.5 wt% Al were prepared via incipient wetness impregnation, and calcined at 300 °C or 500 °C. The catalysts were characterised using X-ray diffraction, scanning transmission electron microscopy coupled with energy-dispersive X-ray spectroscopy, temperature programmed reduction (TPR) and X-ray absorption near edge spectroscopy. The alumina modification was found to prevent sintering during calcination and decrease the reducibility of the catalysts. With increasing alumina loading, and increasing calcination temperature, reduction peaks shift to higher temperatures and peaks above 400 °C appear in the TPR. The kinetic evaluation shows that the decreased reducibility is due to a decrease in the pre-exponential factor, which suggests that the alumina modification hinders hydrogen activation and the nucleation of reduced cobalt phases. The catalysts are completely reduced below 800 °C, and no CoAl2O4 phase formation was observed. TPR peaks between 400 and 650 °C were assigned to the formation of a non-stoichiometric cobalt–alumina phase with cobalt ions in octahedral coordination, while peaks between 650 and 800 °C correspond to cobalt ions in tetrahedral coordination. The results show that introduction of small amounts of alumina to cobalt oxide can have drastic effects on the rate of reduction and sintering.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Tauster SJ (1987) Acc Chem Res 20:389

    Article  CAS  Google Scholar 

  2. Fu Q, Wagner T (2007) Surf Sci Rep 62:431

    Article  CAS  Google Scholar 

  3. Jermwongratanachai T, Jacobs G, Shafer WD, Pendyala VRR, Ma W, Gnanamani MK, Hopps S, Thomas GA, Kitiyanan B, Khalid S, Davis BH (2014) Catal Today 228:15

    Article  CAS  Google Scholar 

  4. Tsakoumis NE, Voronov A, Rønning M, van Beek W, Borg Ø, Rytter E, Holmen A (2012) J Catal 291:138

    Article  CAS  Google Scholar 

  5. Gnanamani MK, Jacobs G, Graham UM, Pendyala VRR, Martinelli M, MacLennan A, Hu Y, Davis BH (2017) Appl Catal A 538:190

    Article  CAS  Google Scholar 

  6. Hilmen AM, Schanke D, Holmen A (1996) Catal Lett 38:143

    Article  CAS  Google Scholar 

  7. Kissinger HE (1957) Anal Chem 29:1702

    Article  CAS  Google Scholar 

  8. Jacobs G, Ji Y, Davis BH, Cronauer D, Kropf AJ, Marshall CL (2007) Appl Catal A 333:177

    Article  CAS  Google Scholar 

  9. Tang CW, Wang CB, Chien SH (2008) Thermochim Acta 473:68

    Article  CAS  Google Scholar 

  10. Sexton BA, Hughes AE, Turney TW (1986) J Catal 97:390

    Article  CAS  Google Scholar 

  11. Rosynek MP, Polansky CA (1991) Appl Catal 73:97

    Article  CAS  Google Scholar 

  12. Ji Y, Zhao Z, Duan A, Jiang G, Liu J (2009) J Phys Chem C 113:7186

    Article  CAS  Google Scholar 

  13. Arnoldy P, Moulijn JA (1985) J Catal 93:38

    Article  CAS  Google Scholar 

  14. Wang WJ, Chen YW (1991) Appl Catal 77:223

    Article  CAS  Google Scholar 

  15. Lapidus A, Krylova A, Kazanskii V, Borovkov V, Zaitsev A, Rathousky J, Zukal A, Jančálková M (1991) Appl Catal 73:65

    Article  CAS  Google Scholar 

  16. Jongsomjit B, Panpranot J, Goodwin JG (2001) J Catal 204:98

    Article  CAS  Google Scholar 

  17. Nabaho D, Niemantsverdriet JW, Claeys M, van Steen E (2016) Catal Today 275:27

    Article  CAS  Google Scholar 

  18. Borg Ø, Eri S, Blekkan EA, Storsæter S, Wigum H, Rytter E, Holmen A (2007) J Catal 248:89

    Article  CAS  Google Scholar 

  19. Kogelbauer A, Goodwin JG Jr, Oukaci R (1996) J Catal 160:125

    Article  CAS  Google Scholar 

  20. van de Loosdrecht J, Barradas S, Caricato EA, Ngwenya NG, Nkwanyana PS, Rawat MAS, Sigwebela BH, van Berge PJ, Visagie JL (2003) Top Catal 26:121

    Article  Google Scholar 

  21. Bhatia S, Beltramini J, Do DD (1990) Catal Today 7:309

    Article  CAS  Google Scholar 

  22. Ji L, Lin J, Zeng HC (2000) J Phys Chem B 104:1783

    Article  CAS  Google Scholar 

  23. Zhang Y, Wei D, Hammache S, Goodwin JG Jr (1999) J Catal 188:281

    Article  CAS  Google Scholar 

  24. Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH (2002) Appl Catal A 233:263

    Article  CAS  Google Scholar 

  25. Chung KS, Massoth FE (1980) J Catal 64:320

    Article  CAS  Google Scholar 

  26. Scherrer P (1918) Nachr Gesell Wissen Göttingen, Math-Phys Klasse, 1918:98

  27. Langford JI, Wilson AJC (1978) J Appl Crystallogr 11:102

    Article  CAS  Google Scholar 

  28. Ravel B, Newville M (2005) J Synchrotron Radiat 12:537

    Article  CAS  Google Scholar 

  29. Batley GE, Ekstrom A, Johnson DA (1974) J Catal 34:368

    Article  CAS  Google Scholar 

  30. Liu J, Zhang H, Zhou T, Wei S (2000) Jinshu Xuebao 36:837

    CAS  Google Scholar 

  31. Haber J (1977) J Less Common Metals 54:243

    Article  CAS  Google Scholar 

  32. Shulman GR, Yafet Y, Eisenberger P, Blumberg WE (1976) PNAS 73:1384

    Article  CAS  Google Scholar 

  33. Tsakoumis NE, Johnsen RE, Van Beek W, Rønning M, Rytter E, Holmen A (2016) Chem Commun 52:3239

    Article  CAS  Google Scholar 

  34. Kurajica S, Popović J, Tkalčec E, Gržeta B, Mandić V (2012) Mater Chem Phys 135:587

    Article  CAS  Google Scholar 

  35. Chin RL, Hercules DM (1982) J Phys Chem 86:360

    Article  CAS  Google Scholar 

  36. Okamoto Y, Nagata K, Adachi T, Imanaka T, Inamura K, Takyu T (1991) J Phys Chem 95:310

    Article  CAS  Google Scholar 

  37. Bracconi P, Dufour LC (1970) Cr Acad Sci C Chim 270:1152

    CAS  Google Scholar 

  38. Hurst NW, Gentry SJ, Jones A (1982) Catal Rev 24:233

    Article  CAS  Google Scholar 

  39. Burnham AK, Weese RK, Weeks BL (2004) J Phys Chem B 108:19432

    Article  CAS  Google Scholar 

  40. Ward MR, Boyes ED, Gai PL (2014) J Phys Conf Ser 522:012009/1

    CAS  Google Scholar 

  41. Boldyrev VV (1986) Thermochim Acta 100:315

    Article  CAS  Google Scholar 

  42. Johnson GR, Bell AT (2016) J Catal 338:250

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is based on the research supported by funding from c*change (DST-NRF Centre of Excellence in Catalysis) and in part by the National Research Foundation of South Africa Grant number 94878. The authors wish to gratefully acknowledge the Centre for High Resolution Transmission Electron Microscopy, especially Dr. J. E. Olivier and Dr. J. H. O’Connell, at Nelson Mandela University in Port Elizabeth for their assistance and use of their facilities. This study used resources of the Brazilian Synchrotron Light Laboratory (LNLS), an open national facility operated by the Brazilian Centre for Research in Energy and Materials (CNPEM) for the MCTIC. The XAFS2 beamline staff, especially Dr. S. Figueroa and Dr. A. P. da Silva Sotero Levinsky are acknowledged for the assistance during the experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric van Steen.

Ethics declarations

Conflict of interest

All authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petersen, A.P., Forbes, R.P., Govender, S. et al. Effect of Alumina Modification on the Reducibility of Co3O4 Crystallites Studied on Inverse-Model Catalysts. Catal Lett 148, 1215–1227 (2018). https://doi.org/10.1007/s10562-018-2332-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2332-5

Keywords

Navigation