Skip to main content
Log in

Effect of Synthetic Route and Metal Oxide Promoter on Cobalt-Based Catalysts for Fischer–Tropsch Synthesis

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A hydrothermal technique was employed in order to produce a novel coordination polymer [Co0.42Ni0.40Zn0.68(btc)(H2O)6] (1). The complex (1) was characterized by elemental analysis, and FT-IR spectroscopy; and its structure was determined by single crystal X-ray diffraction (XRD). Alumina-supported Co–Ni–Zn and silica catalysts were prepared by thermal decomposition of respective inorganic precursors (fabricated or synthesized catalysts) and through impregnation method as reference catalysts. The evaluation of catalytic activity of these catalysts was carried out at a fixed bed reactor for Fischer–Tropsch synthesis. The performance of the synthesized catalysts was much better than the catalysts which were produced by the impregnation procedure, those that were characterized by scanning electron microscopy (SEM), XRD, and BET specific surface area.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Niziolek AM, Onel O, Elia JA, Baliban RC, Xiao X, Floudas CA (2014) Coal and biomass to liquid transportation fuels: process synthesis and global optimization strategies. Ind Eng Chem Res 53:17002–17025

    Article  CAS  Google Scholar 

  2. Li T, Wang H, Yang Y, Xiang H, Li Y (2014) Study on an iron–nickel bimetallic Fischer–Tropsch synthesis catalyst. Fuel Process Technol 118:117–124

    Article  CAS  Google Scholar 

  3. Ding M, Yang Y, Xu J, Tao Z, Wang H, Wang H, Xiang H, Li Y (2008) Effect of reduction pressure on precipitated potassium promoted iron–manganese catalyst for Fischer–Tropsch synthesis. Appl Catal A Gen 345:176–184

    Article  CAS  Google Scholar 

  4. De la Pena O’Shea VA, Alvarez-Galvan MC, Campos-Martin JM, Fierro JLG (2005) Strong dependence on pressure of the performance of a Co/SiO2 catalyst in Fischer–Tropsch slurry reactor synthesis. Catal Lett 100:105–116

    Article  Google Scholar 

  5. Davis BH (2003) Fischer-Tropsch synthesis: relationship between iron catalyst composition and process variables. Catal Today 84:83–98

    Article  CAS  Google Scholar 

  6. Mirzaei AA, Kiai RM, Atashi H, Arsalanfar M, Shahriari S (2012) Kinetic study of CO hydrogenation over co-precipitated iron–nickel catalyst. J Ind Eng Chem 18:1242–1251

    Article  CAS  Google Scholar 

  7. Dry ME (2002) The fischer–tropsch process: 1950–2000. Catal Today 71:227–241

    Article  CAS  Google Scholar 

  8. De La Osa AR, De Lucas A, Romero A, Valverde JL, Sánchez P (2011) Fischer–Tropsch diesel production over calcium-promoted Co/alumina catalyst: effect of reaction conditions. Fuel 90:1935–1945

    Article  Google Scholar 

  9. Rytter E, Skagseth TH, Eri S, Sjåstad AO (2010) Cobalt Fischer–Tropsch catalysts using nickel promoter as a rhenium substitute to suppress deactivation. Ind Eng Chem Res 49:4140–4148

    Article  CAS  Google Scholar 

  10. Ishihara T, Eguchi K, Arai H (1987) Hydrogenation of carbon monoxide over SiO2-supported Fe-Co, Co-Ni and Ni-Fe bimetallic catalysts. Appl Catal 30:225–238

    Article  CAS  Google Scholar 

  11. Ishihara T, Horiuchi N, Inoue T, Eguchi K, Takita Y, Arai H (1992) Effect of alloying on CO hydrogenation activity over SiO2-supported Co-Ni alloy catalysts. J Catal 136:232–241

    Article  CAS  Google Scholar 

  12. Enger BC, Holmen A, Nickel, Synthesis F-T (2012) Nickel and Fischer-Tropsch synthesis. Cat Rev Sci Eng 54:437–488

    Article  CAS  Google Scholar 

  13. Voss GJ, Fløystad JB, Voronov A, Rønning M (2015) The state of nickel as promotor in cobalt Fischer–Tropsch synthesis catalysts. Top Catal 58:896–904

    Article  CAS  Google Scholar 

  14. Feyzi M, Khodaei MM, Shahmoradi J (2012) Effect of preparation and operation conditions on the catalytic performance of cobalt-based catalysts for light olefins production. Fuel Process Technol 93:90–98

    Article  CAS  Google Scholar 

  15. Du J, Yan J, Hong J, Zhang Y, Chen S, Li J (2015) Catalytic performance of Co/Zn–Al2O3 Fischer–Tropsch catalysts: a comparative study of zinc introduction methodologies. RSC Adv 5:60534–60540

    Article  CAS  Google Scholar 

  16. Saheli S, Rezvani AR, Malekzadeh A (2017) Study of structural and catalytic properties of Ni catalysts prepared from inorganic complex precursor for Fischer–Tropsch synthesis. J Mol Struct 1144:166–172

    Article  CAS  Google Scholar 

  17. Saheli S, Rezvani AR, Malekzadeh A, Dusek M, Eigner V (2018) Novel inorganic precursors [Co4.32 Zn1.68 (HCO2)18(C2H8N)6]/SiO2 and [Co4.32 Zn1.68 (HCO2)18(C2H8N)6]/Al2O3 for Fischer–Tropsch synthesis. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2017.11.019

    Article  Google Scholar 

  18. Farzanfar J, Rezvani AR (2015) Inorganic complex precursor route for preparation of high-temperature Fischer–Tropsch synthesis Ni–Co nanocatalysts. Res Chem Intermed 41:8975–9001

    Article  CAS  Google Scholar 

  19. Razmara Z, Rezvani AR, Saravani H (2017) Fischer–Tropsch reaction over a Co2-Ni-Mn/SiO2 nanocatalyst prepared by thermal decomposition of a new precursor. Chem Pap 71:849–856

    Article  CAS  Google Scholar 

  20. Janani H, Rezvani AR, Grivani GH, Mirzaei AA (2015) Fischer–Tropsch synthesis of hydrocarbons over new Co/Ce bimetallic catalysts derived from Dipicolinate and carbonyl metal complexes. J Inorg Organomet Polym 25:1169–1182

    Article  CAS  Google Scholar 

  21. Janani H, Rezvani AR, Grivani GH, Mirzaei AA (2016) Preparation and characterization of a new cobalt hydrazone complex and its catalytic activity in the hydrogenation of carbon monoxide (Fischer–Tropsch synthesis). React Kinet Mech Catal 117:189–203

    Article  CAS  Google Scholar 

  22. Palatinus L, Chapuis G (2007) SUPERFLIP—a computer program for the solution of crystal structures by charge flipping in arbitrary dimensions. J Appl Cryst 40:786–790

    Article  CAS  Google Scholar 

  23. Petricek V, Dusek M, Palatinus L (2014) Crystallographic computing system JANA2006: general features. Z Kristallogr 229:345–352

    CAS  Google Scholar 

  24. Wu CD, Lu CZ, Yang WB, Zhuang HH, Huang JS (2002) Hydrothermal synthesis, structures, and magnetic properties of three novel 5-aminoisophthalic acid ligand bridged transition metal cation polymers. Inorg Chem 41:3302–3307

    Article  CAS  Google Scholar 

  25. Yaghi OM, Li H, Groy TL (1996) Construction of porous solids from hydrogen-bonded metal complexes of 1,3,5-benzenetricarboxylic acid. J Am Chem Soc 118:9096–9101

    Article  CAS  Google Scholar 

  26. Majumder A, Shit S, Choudhury CR, Batten SR, Pilet G, Luneau D, Mitra S (2005) Synthesis, structure and fluorescence of two novel manganese(II) and zinc(II)-1,3,5-benzene tricarboxylate coordination polymers: extended 3D supramolecular architectures stabilised by hydrogen bonding. Inorg Chim Acta 358:3855–3864

    Article  CAS  Google Scholar 

  27. Saheli S, Rezvani AR (2017) A novel coordination polymer of Ni(II) based on 1,3,5-benzenetricarboxylic acid synthesis, characterization, crystal structure, thermal study, and luminescent properties. J Mol Struct 1127:583–589

    Article  CAS  Google Scholar 

  28. Hamidipour L, Kubicki M, Farzaneh F, Ghandi M, Maghami M (2013) Synthesis, characterization and crystal structure of Ni(II) coordination polymer with 1,3,5 benzenetricarboxylic acid and 2,2′-bipyridine ligands. Inorg Chem Commun 36:227–231

    Article  CAS  Google Scholar 

  29. Socrates G (1980) Infrared characteristic group of wavenumbers. Wiley, New York

    Google Scholar 

  30. Nakamoto K (1997) Infrared and Raman spectra of inorganic and coordination compounds. Wiley, New York

    Google Scholar 

  31. Das J, Evans IR, Khushalani D (2009) Zinc glycolate: a precursor to ZnO. Inorg Chem 48:3508–3510

    Article  CAS  Google Scholar 

  32. El-Kemary M, Nagy N, El-Mehasseb I (2013) Nickel oxide nanoparticles: synthesis and spectral studies of interactions with glucose. Mater Sci Semicond Process 16:1747–1752

    Article  CAS  Google Scholar 

  33. Ferraro JR (1971) Low frequency vibrations of inorganic and co-ordination compounds. Plenum Press, New York

    Google Scholar 

  34. Sharifi SL, Shakur HR, Mirzaei A, Hosseini MH (2013) Characterization of cobalt oxide Co3O4 nanoparticles prepared by various methods: effect of calcination temperatures on size, dimension and catalytic decomposition of hydrogen peroxide. IJNN 9:51–58

    Google Scholar 

  35. Zhang S, Zhu X, Zheng C, Hu D, Zhang J, Gao X (2017) Study on catalytic soot oxidation over spinel type ACo2O4 (A = Co, Ni, Cu, Zn) catalysts. Aerosol Air Qual Res 17:2317–2327

    Article  CAS  Google Scholar 

  36. Zhou C, Feng Z, Zhang Y, Hu L, Chen R, Shan B, Yin H, Wang WG, Huang A (2015) Enhanced catalytic activity for NO oxidation over Ba doped LaCoO3 catalyst. RSC Adv 5:28054–28059

    Article  CAS  Google Scholar 

  37. Wang X, Wen W, Mi J, Li X, Wang R (2015) The ordered mesoporous transition metal oxides for selective catalytic reduction of NOx at low temperature. Appl Catal B 176–177:454–463

    Article  Google Scholar 

  38. Klissurski DG, Uzunova EL (1990) Synthesis of high-dispersity zinc cobaltite from coprecipitated hydroxycarbonate precursor. J Mater Sci Lett 9:576–579

    Article  Google Scholar 

  39. Chu W, Yang W, Lin L (2001) Selective oxidation of methane to syngas over NiO/barium hexaaluminate. Catal lett 74:139–144

    Article  CAS  Google Scholar 

  40. Rynkowski JM, Paryjczak T, Lenik M (1993) On the nature of oxidic nickel phases in NiO/γ-Al2O3 catalysts. Appl Catal A 106:73–82

    Article  CAS  Google Scholar 

  41. Lee YS, Kim HT, Yoo KO (1995) Effect of ferric oxide on the high-temperature removal of hydrogen sulfide over ZnO-Fe2O3 mixed metal oxide sorbent. Ind Eng Chem Res 34:1181–1188

    Article  CAS  Google Scholar 

  42. Niu J, Liu W, Dai H, He H, Zi X, Li P (2006) Preparation and characterization of highly active nanosized strontium-doped lanthanum cobaltate catalysts with high surface areas. Chin Sci Bull 51:1673–1681

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to University of Sistan and Bluchestan for the support of this work. The crystallographic part was supported by the Project 18-10504S of the Czech Science Foundation using instruments of the ASTRA lab established within the Operation program Prague Competitiveness—Project CZ.2.16/3.1.00/24510.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Reza Rezvani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2036 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saheli, S., Rezvani, A.R., Malekzadeh, A. et al. Effect of Synthetic Route and Metal Oxide Promoter on Cobalt-Based Catalysts for Fischer–Tropsch Synthesis. Catal Lett 148, 3557–3569 (2018). https://doi.org/10.1007/s10562-018-2537-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2537-7

Keywords

Navigation