Skip to main content
Log in

Efficient Baeyer–Villiger Oxidation Catalysed by Silver Nanoparticles Stabilized on Modified Montmorillonite

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Silver nanoparticles supported on modified montmorillonite clay (Ag-NPs@mont), were utilized as catalyst for the Baeyer–Villiger oxidation of various ketones with hydrogen peroxide as an oxidant under solvent free condition at room temperature. The modification of Montmorillonite K10 clay was carried out with HCl under controlled conditions for generating a high surface area porous matrix which acts as support for the in situ generation of Silver nanoparticles. The synthesized nanocomposite material was characterized by UV–Visible spectroscopy, powder XRD, SEM-EDX, TEM and N2 adsorption–desorption analysis. The catalyst can be recycled and reused several times without significant loss of their catalytic activity.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 1

Similar content being viewed by others

References

  1. Narayanan R (2012) Green Chem Lett Rev 5:707

    Article  CAS  Google Scholar 

  2. Chen WW, Nguyen RV, Li CJ (2009) Tetrahedron Lett 50:2895

    Article  CAS  Google Scholar 

  3. Zeng T, Chen WW, Cirtiu CM, Moores A, Song G, Li CJ (2010) Green Chem 12:570

    Article  CAS  Google Scholar 

  4. Zhou X, Lu Y, Zhai LL, Zhao Y, Liu Q, Sun WY (2013) RSC Adv 3:1732

    Article  CAS  Google Scholar 

  5. Karimi B, Gholinejad M, Khorasani M (2012) Chem Commun 48:8961

    Article  CAS  Google Scholar 

  6. Borah SJ, Das DK (2016) Catal Lett 146:656–665

    Article  CAS  Google Scholar 

  7. Paul M, Pal N, Mondal J, Sasidharan M, Bhaumik A (2012) Chem Eng Sci 71:564–572

    Article  CAS  Google Scholar 

  8. Otomo R, Kosugi R, Kamiya Y, Tatsumia T, Yokoi T (2016) Catal Sci Technol 6:2787

    Article  CAS  Google Scholar 

  9. Ten Brink GJ, Arends IW, Sheldon RA (2004) Chem Rev 104:4105–4123

    Article  Google Scholar 

  10. Campelo JM, Luna D, Luque R, Marinas JM, Romero AA (2009) ChemSusChem 2:18–45

    Article  CAS  Google Scholar 

  11. Templeton AC, Wuelfing WP, Murray RW (2000) Acc Chem Res 33:27–36

    Article  CAS  Google Scholar 

  12. Rao CNR, Kulkarni GU, Thomas PJ, Edwards PP (2000) Chem Soc Rev 29:27–35

    Article  CAS  Google Scholar 

  13. Borah BJ, Dutta D, Dutta DK (2010) Appl Clay Sci 49:317–323

    Article  CAS  Google Scholar 

  14. Schröder F, Esken D, Cokoja M, Van den Berg MWE, Lebedev OI, Tendeloo GV, Walaszek B, Buntkowsky G, Limbach HH, Chaudret B, Fischer RA (2008) J Am Chem Soc 130:6119–6130

    Article  Google Scholar 

  15. Rogatis LD, Cargnello M, Gombac V, Lorenzut B, Montini T, Fornasiero P (2010) ChemSusChem 3:24

    Article  Google Scholar 

  16. Kaneda K, Mitsudome T, Mizugaki T, Jitsukawa K (2010) Molecules 15:8988

    Article  CAS  Google Scholar 

  17. Chrobok A, Baj S, Pudlo W, Jarzebski A (2009) Appl Catal A 366:22–28

    Article  CAS  Google Scholar 

  18. Piscopo CG, Loebbecke S, Maggi R, Sartori G (2010) Adv Synth Catal 352:1625–1629

    Article  CAS  Google Scholar 

  19. Corma A, Nemeth MT, Renz M, Valencia S (2001) Nature 412:423–425

    Article  CAS  Google Scholar 

  20. Corma A, Navarro MT, Renz M (2003) J Catal 219:242–246

    Article  CAS  Google Scholar 

  21. Hara T, Hatakeyama M, Kim A, Ichikuni N, Shimazu S (2012) Green Chem 14:771

    Article  CAS  Google Scholar 

  22. Saikia P, Sarmah PP, Borah BJ, Saikia L, Saikia K, Dutta DK (2016) Green Chem 18:2843–2850

    Article  CAS  Google Scholar 

  23. Pillai UR, Demessie ES (2003) J Mol Catal A 191:93–100

    Article  CAS  Google Scholar 

  24. Saito Y, Wang JJ, Smith DA, Batchelder DN (2002) Langmuir 18:2959

    Article  CAS  Google Scholar 

  25. Lee D, Cohen RE, Rubner MF (2005) Langmuir 21:9651

    Article  CAS  Google Scholar 

  26. Khan MAM, Kumar S, Ahamed M, Alrokayan SA, AlSalhi MS (2011) Nanoscale Res Lett 6:434

    Article  Google Scholar 

  27. Kushal DB, Pawan JT, Kishor PD, Bhalchandra MB (2010) Catal Commun 11:1233

    Article  Google Scholar 

  28. Safaei Ghomi J, Ghasemzadeh M (2013) J Chem Sci 125:1003

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge SAIF, NEHU for the TEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subrat Jyoti Borah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Borah, S.J., Das, D.K. Efficient Baeyer–Villiger Oxidation Catalysed by Silver Nanoparticles Stabilized on Modified Montmorillonite. Catal Lett 148, 3669–3677 (2018). https://doi.org/10.1007/s10562-018-2566-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-018-2566-2

Keywords

Navigation