Skip to main content
Log in

Selective Oxidation of Glyoxal to Glyoxalic Acid by Air over Mesoporous Silica Supported Pd Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A series of mesoporous silica (KIT-6, MCM-41 and SBA-15) supported Pd catalysts were successfully synthesized and applied for selective oxidation of glyoxal. All of these catalysts exhibited significantly higher activity than commercial Pd/C. Among them, Pd/KIT-6 exhibited the best activity and selectivity with 41.3% glyoxal conversion and 57.0% selectivity to glyoxalic acid. The better performance of Pd/KIT-6 was attributed to its three-dimensional mesoporous structure. The three-dimensional mesoporous structure of KIT-6 could enhance Pd dispersion, providing sufficient accessible active sites which improved the conversion of glyoxal. Meanwhile, the better mass transfer capability of Pd/KIT-6 allowed glyoxalic acid to leave the catalyst easily, reducing the probability of over-oxidation. The ratio of kI (rate constant of initial oxidation reaction) to kII (rate constant of over-oxidation) was compared among three catalysts. The kI/kII of Pd/KIT-6 (0.50) was higher than that of Pd/MCM-41 (0.39) and Pd/SBA-15 (0.34), which reflected its best selectivity from kinetic aspect.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Alardin F, Ruiz P, Delmon B, Devillers M (2018) Appl Catal A 215:125–136

    Article  Google Scholar 

  2. Li K, Frost JW (1998) J Am Chem Soc 120:10545–10546

    Article  CAS  Google Scholar 

  3. Meester WJN, Maarseveen JHV, Schoemaker HE, Hiemstra H, Rutjes FPJT (2003) Eur J Org Chem 1:2519–2529. https://doi.org/10.1002/ejoc.200200714

    Article  CAS  Google Scholar 

  4. Deffernez A, Hermans S, Devillers M (2005) Appl Catal A 282:303–313

    Article  CAS  Google Scholar 

  5. Hermans S, Thiltges F, Deffernez A, Devillers M (2012) Catal Lett 142:521–530

    Article  CAS  Google Scholar 

  6. Jia ML, Liu CX, Wang J, Bao S, Bao Z (2014) Kinet Catal 55:671–675

    Article  CAS  Google Scholar 

  7. Hermans S, Devillers M (2005) Catal Lett 99:55–64

    Article  CAS  Google Scholar 

  8. Deffernez A, Hermans S, Devillers M (2007) J Phys Chem C 111:9448–9459

    Article  CAS  Google Scholar 

  9. Alardin F, Delmon B, Ruiz P, Devillers M (2000) Catal Today 61:255–262

    Article  CAS  Google Scholar 

  10. Alardin F, Wullens H, Hermans S, Devillers M (2005) J Mol Catal A 225:79–89

    Article  CAS  Google Scholar 

  11. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1997) Science 279:548–552

    Article  Google Scholar 

  12. Kleitz F, Choi SH, Ryoo R (2003) Chem Commun 17:2136–2137

    Article  CAS  Google Scholar 

  13. Jiao F, Frei H (2009) Angew Chem Int Ed 48:1841–1844

    Article  CAS  Google Scholar 

  14. Crudden CM, Sateesh M, Lewis R (2005) J Am Chem Soc 127:10045–10050

    Article  CAS  PubMed  Google Scholar 

  15. Kim SW, Son SU, Lee SI, Hyeon T, Chung YK (2000) J Am Chem Soc 122:1550–1551

    Article  CAS  Google Scholar 

  16. Zhu K, Hu J, Richards R (2005) Catal Lett 100:195–199

    Article  CAS  Google Scholar 

  17. Belhekar AA, Awate SV, Anand R (2002) Catal Commun 3:453–458

    Article  CAS  Google Scholar 

  18. Naik B, Hazra S, Prasad VS, Ghosh NN (2011) Catal Commun 12:1104–1108

    Article  CAS  Google Scholar 

  19. Karimi B, Abedi S, Clark JH, Budarin V (2006) Angew Chem Int Ed 118:4894–4897

    Article  Google Scholar 

  20. Parlett CMA, Bruce DW, Hondow NS, Lee AF, Wilson K (2011) ACS Catal 1:636–640

    Article  CAS  Google Scholar 

  21. Parlett CMA, Bruce DW, Hondow NS, Newton MA, Lee AF, Wilson K (2013) ChemCatChem 5:939–950

    Article  CAS  Google Scholar 

  22. Cai Q, Lin WY, Xiao FS, Pang WQ, Chen XH, Zou BS (1999) Microporous Mesoporous Mater 32:1–15

    Article  CAS  Google Scholar 

  23. Mastalir Á, Rác B, Király Z, Molnár Á (2007) J Mol Catal A 264:170–178

    Article  CAS  Google Scholar 

  24. Sonwane CG, Bhatia SK (1999) Langmuir 15:2809–2816

    Article  CAS  Google Scholar 

  25. Grün M, Unger KK, Matsumoto A, Tsutsumi K (1999) Microporous Mesoporous Mater 27:207–216

    Article  Google Scholar 

  26. Li C, Zhang Q, Wang Y, Wan H (2008) Catal Lett 120:126–136

    Article  CAS  Google Scholar 

  27. Marx S, Krumeich F, Baiker A (2011) J Phys Chem C 115:8195–8205

    Article  CAS  Google Scholar 

  28. Cabilla GC, Bonivardi AL, Baltanás MA (1998) Catal Lett 55:147–156

    Article  CAS  Google Scholar 

  29. Canton P, Menegazzo F, Polizzi S, Pinna F, Pernicone N, Riello P, Fagherazzi G (2003) Catal Lett 88:141–146

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Shanghai Science and Technology Committee (Grant No. 14DZ2273900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Shen.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Qin, F., Huang, Z. et al. Selective Oxidation of Glyoxal to Glyoxalic Acid by Air over Mesoporous Silica Supported Pd Catalysts. Catal Lett 149, 1894–1902 (2019). https://doi.org/10.1007/s10562-019-02799-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02799-3

Keywords

Navigation