Skip to main content
Log in

Neural Computing Strategy for Predicting Deactivation of Fischer–Tropsch Synthesis With Different Nickel Loadings

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Direct determination of the process deactivation model relates to catalyst stability and plays a crucial role in the process control. The present study aims at investigating the influence of nickel loading (10–20 wt%) on the deactivation model parameters of Ni/Al2O3 catalyst prepared by incipient wetness impregnation. Artificial neural network (ANN) predicts a steady-state activity of the catalyst for the ultimate purpose of a deactivation model selection. The results obtained from an ANN demonstrated that the first-order general power law expressions (GPLE1 model) could adequately predict the catalytic activity during long reaction time. Considering various loadings of nickel on an alumina support, better stability of 20Ni/Al2O3 catalyst was confirmed. Model parameters affirmed that a decrease in the loading of the nickel-made active phase increases the deactivation rate of the catalyst.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Zohdi-Fasaei H, Atashi H, Farshchi Tabrizi F, Mirzaei AA (2017) Modeling and optimization of Fischer-Tropsch synthesis over Co–Mn–Ce/SiO2 catalyst using hybrid RSM/LHHW approaches. Energy 128:496–508

    Article  CAS  Google Scholar 

  2. Mosayebi A, Abedini R (2017) Detailed kinetic study of Fischer-Tropsch synthesis for gasoline production over CoNi/HZSM-5 nano-structure catalyst. Int J Hydrog Energy. 42(44):27013–27023

    Article  CAS  Google Scholar 

  3. Li C, Sayaka I, Chisato F, Fujimoto K (2016) Development of high performance graphite-supported iron catalyst for Fischer-Tropsch synthesis. Appl Catal A 509:123–129

    Article  CAS  Google Scholar 

  4. Zhao J, Zhao B, Wang X, Yang X (2017) Atomization performance and TG analysis of Fischer-Tropsch fuel compared with RP-3 aviation fuel. Int J Hydrog Energy 42(29):18626–18632

    Article  CAS  Google Scholar 

  5. Zhang L, Chu H, Qu H, Zhang Q, Xu H, Cao J et al (2018) An investigation of efficient microstructured reactor with monolith Co/anodic γ-Al2O3/Al catalyst in Fischer-Tropsch synthesis. Int J Hydrog Energy 43(6):3077–3086

    Article  CAS  Google Scholar 

  6. Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer-Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107(5):1692–1744

    Article  CAS  PubMed  Google Scholar 

  7. Casci JL, Lok CM, Shannon MD (2009) Fischer-Tropsch catalysis: the basis for an emerging industry with origins in the early 20th century. Catal Today 145(1–2):38–44

    Article  CAS  Google Scholar 

  8. Bartholomew CH (2001) Mechanisms of catalyst deactivation. Appl Catal A 212(1–2):17–60

    Article  CAS  Google Scholar 

  9. Mattos LV, Jacobs G, Davis BH, Noronha FB (2012) Production of hydrogen from ethanol: review of reaction mechanism and catalyst deactivation. Chem Rev 112(7):4094–4123

    Article  CAS  PubMed  Google Scholar 

  10. Rojo-Gama D, Signorile M, Bonino F, Bordiga S, Olsbye U, Lillerud KP et al (2017) Structure-deactivation relationships in zeolites during the methanol-to-hydrocarbons reaction: complementary assessments of the coke content. J Catal 351:33–48

    Article  CAS  Google Scholar 

  11. Steynberg AP, Deshmukh SR, Robota HJ (2018) Fischer-Tropsch catalyst deactivation in commercial microchannel reactor operation. Catal Today 299:10–13

    Article  CAS  Google Scholar 

  12. Jahangiri H, Bennett J, Mahjoubi P, Wilson K, Gu S (2014) A review of advanced catalyst development for Fischer-Tropsch synthesis of hydrocarbons from biomass derived syn-gas. Catal Sci Technol 4(8):2210–2229

    Article  CAS  Google Scholar 

  13. Li D, Koike M, Wang L, Nakagawa Y, Xu Y, Tomishige K (2014) Regenerability of hydrotalcite-derived nicke-iron alloy nanoparticles for syngas production from biomass tar. chemSusChem 7(2):510–522

    Article  CAS  PubMed  Google Scholar 

  14. Chen SQ, Liu Y (2009) LaFeyNi1−yO3 supported nickel catalysts used for steam reforming of ethanol. Int J Hydrog Energy 34(11):4735–4746

    Article  CAS  Google Scholar 

  15. Ashok J, Kawi S (2013) Nickel–iron alloy supported over iron–alumina catalysts for steam reforming of biomass tar model compound. ACS Catal 4(1):289–301

    Article  CAS  Google Scholar 

  16. Zhang T, Amiridis MD (1998) Hydrogen production via the direct cracking of methane over silica-supported nickel catalysts. Appl Catal A 167(2):161–172

    Article  CAS  Google Scholar 

  17. Suelves I, Lázaro MJ, Moliner R, Corbella BM, Palacios JM (2005) Hydrogen production by thermo catalytic decomposition of methane on Ni-based catalysts: influence of operating conditions on catalyst deactivation and carbon characteristics. Int J Hydrog Energy 30(15):1555–1567

    Article  CAS  Google Scholar 

  18. Tao M, Meng X, Lv Y, Bian Z, Xin Z (2015) Effect of impregnation solvent on Ni dispersion and catalytic properties of Ni/SBA-15 for CO methanation reaction. Fuel 165:289–297

    Article  CAS  Google Scholar 

  19. van de Loosdrecht J, van der Kraan AM, van Dillen AJ, Geus JW (1996) Metal-support interaction: titania-supported nickel-iron catalysts. Catal Lett 41(1):27–34

    Article  Google Scholar 

  20. Adib H, Haghbakhsh R, Saidi M, Takassi MA, Sharifi F, Koolivand M et al (2013) Modeling and optimization of Fischer-Tropsch synthesis in the presence of Co(III)/Al2O3 catalyst using artificial neural networks and genetic algorithm. J Nat Gas Sci Eng 10:14–24

    Article  CAS  Google Scholar 

  21. Shiva M, Atashi H, Tabrizi FF, Mirzaei AA, Zare A (2013) The application of hybrid DOE/ANN methodology in lumped kinetic modeling of Fischer-Tropsch reaction. Fuel Process Technol 106:631–640

    Article  CAS  Google Scholar 

  22. Khorashadizadeh M, Atashi H, Mirzaei AA (2017) Process conditions effects on Fischer-Tropsch product selectivity: modeling and optimization through a time and cost-efficient scenario using a limited data size. J Taiwan Inst Chem Eng 80:709–719

    Article  CAS  Google Scholar 

  23. Barrientos J, Lualdi M, Boutonnet M, Järås S (2017) Deactivation of supported nickel catalysts during CO methanation. Appl Catal A 486:143–149

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research is financially supported by the University of Sistan and Baluchestan. The authors particularly thank the University of Sistan and Baluchestan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Zohdi-Fasaei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghofran Pakdel, M., Zohdi-Fasaei, H., Mirzaei, A.A. et al. Neural Computing Strategy for Predicting Deactivation of Fischer–Tropsch Synthesis With Different Nickel Loadings. Catal Lett 149, 2444–2452 (2019). https://doi.org/10.1007/s10562-019-02860-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02860-1

Keywords

Navigation