Skip to main content
Log in

The Challenges and Comprehensive Evolution of Cu-Based Zeolite Catalysts for SCR Systems in Diesel Vehicles: A Review

  • Review Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

Nitrogen oxides (NOx) are major contaminant causing environmental pollution in atmosphere. The most effective method for NOx removal is ammonia selective catalytic reduction (NH3-SCR), and catalysts play a crucial role. Cu-based zeolite catalysts are commonly used for the removal of NOx from diesel engine exhaust, but the complex composition of diesel exhaust and the harsh operating environment of catalysts make zeolite catalysts susceptible to deactivation, thus limiting their practical application. This manuscript focuses on the negative effects of actual working conditions associated with diesel vehicle exhausts and analyses the influence of composition structure that Cu-based zeolite catalysts have on NH3-SCR reaction, which refers mainly to the effects brought by topology, Si/Al ratio and Cu species. The strategies for developing Cu-based zeolite catalysts are summarized, and the current development bottlenecks such as improving catalytic performance, reducing synthesis cost and enhancing production efficiency are discussed, and the future research directions of Cu-based zeolite are prospected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Wu Y, Zhang S, Hao J, Liu H, Wu X, Hu J, Walsh MP, Wallington TJ, Zhang KM, Stevanovic S (2017) On-road vehicle emissions and their control in China: a review and outlook. Sci Total Environ 574:332–349

    Article  CAS  PubMed  Google Scholar 

  2. Yu T, Hao T, Fan D, Wang J, Shen M, Li W (2014) Recent NH3-SCR mechanism research over Cu/SAPO-34 catalyst. J Phys Chem C 118(13):6565–6575

    Article  CAS  Google Scholar 

  3. Hammershøi PS, Negri C, Berlier G, Bordiga S, Beato P, Janssens TVW (2019) Temperature-programmed reduction with NO as a characterization of active Cu in Cu-CHA catalysts for NH3-SCR. Catal Sci Technol 9(10):2608–2619

    Article  Google Scholar 

  4. Eijima W, Shibata G, Shibayama N, Kobashi Y, Ogawa H, Shimizu K-i (2020) Kinetic modeling of steady-state NH3-SCR over a monolithic Cu-CHA catalyst. Catal Today 352:237–242

    Article  CAS  Google Scholar 

  5. Chen L, Janssens TVW, Vennestrøm PNR, Jansson J, Skoglundh M, Grönbeck H (2020) A complete multisite reaction mechanism for low-temperature NH3-SCR over Cu-CHA. ACS Catal 10(10):5646–5656

    Article  CAS  Google Scholar 

  6. Liu F, Yu Y, He H (2014) Environmentally-benign catalysts for the selective catalytic reduction of NOx from diesel engines: structure-activity relationship and reaction mechanism aspects. Chem Commun 50(62):8445–8463

    Article  CAS  Google Scholar 

  7. Ming S, Pang L, Chen Z, Guo Y, Guo L, Liu Q, Liu P, Dong Y, Zhang S, Li T (2020) Insight into SO2 poisoning over Cu-SAPO-18 used for NH3-SCR. Microporous Mesoporous Mater 303:110294

    Article  CAS  Google Scholar 

  8. Wan J, Chen J, Zhao R, Zhou R (2021) One-pot synthesis of Fe/Cu-SSZ-13 catalyst and its highly efficient performance for the selective catalytic reduction of nitrogen oxide with ammonia. J Environ Sci 100:306–316

    Article  CAS  Google Scholar 

  9. Fan J, Ning P, Wang Y, Song Z, Liu X, Wang H, Wang J, Wang L, Zhang Q (2019) Significant promoting effect of Ce or La on the hydrothermal stability of Cu-SAPO-34 catalyst for NH3-SCR reaction. Chem Eng J 369:908–919

    Article  CAS  Google Scholar 

  10. Wang D, Jangjou Y, Liu Y, Sharma MK, Luo J, Li J, Kamasamudram K, Epling WS (2015) A comparison of hydrothermal aging effects on NH3-SCR of NO over Cu-SSZ-13 and Cu-SAPO-34 catalysts. Appl Catal B Environ 165:438–445

    Article  CAS  Google Scholar 

  11. Fan C, Chen Z, Pang L, Ming S, Zhang X, Albert KB, Liu P, Chen H, Li T (2018) The influence of Si/Al ratio on the catalytic property and hydrothermal stability of Cu-SSZ-13 catalysts for NH3-SCR. Appl Catal A-Gen 550:256–265

    Article  CAS  Google Scholar 

  12. Albarracin-Caballero JD, Khurana I, Di Iorio JR, Shih AJ, Schmidt JE, Dusselier M, Davis ME, Yezerets A, Miller JT, Ribeiro FH, Gounder R (2017) Structural and kinetic changes to small-pore Cu-zeolites after hydrothermal aging treatments and selective catalytic reduction of NOx with ammonia. React Chem Eng 2(2):168–179

    Article  CAS  Google Scholar 

  13. Fickel DW, D’Addio E, Lauterbach JA, Lobo RF (2011) The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Appl Catal B Environ 102(3–4):441–448

    Article  CAS  Google Scholar 

  14. Blakeman PG, Burkholder EM, Chen H-Y, Collier JE, Fedeyko JM, Jobson H, Rajaram RR (2014) The role of pore size on the thermal stability of zeolite supported Cu SCR catalysts. Catal Today 231:56–63

    Article  CAS  Google Scholar 

  15. Vennestrøm PNR, Janssens TVW, Kustov A, Grill M, Puig-Molina A, Lundegaard LF, Tiruvalam RR, Concepción P, Corma A (2014) Influence of lattice stability on hydrothermal deactivation of Cu-ZSM-5 and Cu-IM-5 zeolites for selective catalytic reduction of NOx by NH3. J Catal 309:477–490

    Article  Google Scholar 

  16. Shan Y, Du J, Yu Y, Shan W, Shi X, He H (2020) Precise control of post-treatment significantly increases hydrothermal stability of in-situ synthesized Cu-zeolites for NH3-SCR reaction. Appl Catal B Environ 266:118655

    Article  CAS  Google Scholar 

  17. Liu Z, Guan B, Jiang H, Wei Y, Wu X, Zhou J, Lin H, Huang Z (2022) Exploring the optimal ratio of elemental components of the Cu/SSZ-13 framework: the reformation of NH3-SCR properties. New J Chem 46(28):13593–13607

    Article  CAS  Google Scholar 

  18. Kumar A, Smith MA, Kamasamudram K, Currier NW, An H, Yezerets A (2014) Impact of different forms of feed sulfur on small-pore Cu-zeolite SCR catalyst. Catal Today 231:75–82

    Article  CAS  Google Scholar 

  19. Hammershøi PS, Jangjou Y, Epling WS, Jensen AD, Janssens TVW (2018) Reversible and irreversible deactivation of Cu-CHA NH3-SCRcatalysts by SO2 and SO3. Appl Catal B Environ 226:38–45

    Article  Google Scholar 

  20. Yong X, Chen H, Zhao H, Wei M, Zhao Y, Li Y (2022) Insight into SO2 poisoning and regeneration of one-pot synthesized Cu-SSZ-13 catalyst for selective reduction of NO by NH3. Chinese J Chem Eng 46:184–193

    Article  CAS  Google Scholar 

  21. Yin C, Cheng P, Li X, Yang RT (2016) Selective catalytic reduction of nitric oxide with ammonia over high-activity Fe/SSZ-13 and Fe/one-pot-synthesized Cu-SSZ-13 catalysts. Catal Sci Technol 6(20):7561–7568

    Article  CAS  Google Scholar 

  22. Hammershøi PS, Vennestrøm PNR, Falsig H, Jensen AD, Janssens TVW (2018) Importance of the Cu oxidation state for the SO2-poisoning of a Cu-SAPO-34 catalyst in the NH3-SCR reaction. Appl Catal B Environ 236:377–383

    Article  Google Scholar 

  23. Jangjou Y, Do Q, Gu Y, Lim L-G, Sun H, Wang D, Kumar A, Li J, Grabow LC, Epling WS (2018) Nature of Cu active centers in Cu-SSZ-13 and their responses to SO2 exposure. ACS Catal 8(2):1325–1337

    Article  CAS  Google Scholar 

  24. Jangjou Y, Wang D, Kumar A, Li J, Epling WS (2016) SO2 Poisoning of the NH3-SCR reaction over Cu-SAPO-34: effect of ammonium sulfate versus Other S-containing species. ACS Catal 6(10):6612–6622

    Article  CAS  Google Scholar 

  25. Zhang L, Wang D, Liu Y, Kamasamudram K, Li J, Epling W (2014) SO2 poisoning impact on the NH3-SCR reaction over a commercial Cu-SAPO-34 SCR catalyst. Appl Catal B Environ 156–157:371–377

    Article  Google Scholar 

  26. Shih AJ, Khurana I, Li H, González J, Kumar A, Paolucci C, Lardinois TM, Jones CB, Albarracin Caballero JD, Kamasamudram K, Yezerets A, Delgass WN, Miller JT, Villa AL, Schneider WF, Gounder R, Ribeiro FH (2019) Spectroscopic and kinetic responses of Cu-SSZ-13 to SO2 exposure and implications for NOx selective catalytic reduction. Appl Catal A-Gen 574:122–131

    Article  CAS  Google Scholar 

  27. Yu R, Zhao Z, Huang S, Zhang W (2020) Cu-SSZ-13 zeolite–metal oxide hybrid catalysts with enhanced SO2-tolerance in the NH3-SCR of NOx. Appl Catal B Environ 269:118825

    Article  CAS  Google Scholar 

  28. Shen M, Zhang Y, Wang J, Wang C, Wang J (2018) Nature of SO3 poisoning on Cu/SAPO-34 SCR catalysts. J Catal 358:277–286

    Article  CAS  Google Scholar 

  29. Wijayanti K, Leistner K, Chand S, Kumar A, Kamasamudram K, Currier NW, Yezerets A, Olsson L (2016) Deactivation of Cu-SSZ-13 by SO2 exposure under SCR conditions. Catal Sci Technol 6(8):2565–2579

    Article  CAS  Google Scholar 

  30. Wijayanti K, Xie K, Kumar A, Kamasamudram K, Olsson L (2017) Effect of gas compositions on SO2 poisoning over Cu/SSZ-13 used for NH3-SCR. Appl Catal B Environ 219:142–154

    Article  CAS  Google Scholar 

  31. Martinovic F, Deorsola FA, Armandi M, Bonelli B, Palkovits R, Bensaid S, Pirone R (2021) Composite Cu-SSZ-13 and CeO2-SnO2 for enhanced NH3-SCR resistance towards hydrocarbon deactivation. Appl Catal B Environ 282:119536

    Article  CAS  Google Scholar 

  32. Heo I, Lee Y, Nam I-S, Choung JW, Lee J-H, Kim H-J (2011) Effect of hydrocarbon slip on NO removal activity of CuZSM5 FeZSM5 and V2O5/TiO2 catalysts by NH3. Microporous Mesoporous Mater 141(1–3):8–15

    Article  CAS  Google Scholar 

  33. Selleri T, Nova I, Tronconi E, Schmeisser V, Seher S (2019) The impact of light and heavy hydrocarbons on the NH3-SCR activity of commercial Cu- and Fe-zeolite catalysts. Catal Today 320:100–111

    Article  CAS  Google Scholar 

  34. Gramigni F, Iacobone U, Nasello ND, Selleri T, Usberti N, Nova I (2021) Review of hydrocarbon poisoning and deactivation effects on Cu-zeolite, Fe-zeolite, and vanadium-based selective catalytic reduction catalysts for NOx removal from lean exhausts. Ind Eng Chem Res 60(18):6403–6420

    Article  CAS  Google Scholar 

  35. Heo I, Sung S, Park MB, Chang TS, Kim YJ, Cho BK, Hong SB, Choung JW, Nam I-S (2019) Effect of hydrocarbon on DeNOx performance of selective catalytic reduction by a combined reductant over Cu-containing zeolite catalysts. ACS Catal 9(11):9800–9812

    Article  CAS  Google Scholar 

  36. Malpartida I, Marie O, Bazin P, Daturi M, Jeandel X (2011) An operando IR study of the unburnt HC effect on the activity of a commercial automotive catalyst for NH3-SCR. Appl Catal B Environ 102(1–2):190–200

    Article  CAS  Google Scholar 

  37. Zhao Q, Chen B, Bai Z, Yu L, Crocker M, Shi C (2019) Hybrid catalysts with enhanced C3H6 resistance for NH3-SCR of NOx. Appl Catal B Environ 242:161–170

    Article  CAS  Google Scholar 

  38. Ma L, Su W, Li Z, Li J, Fu L, Hao J (2015) Mechanism of propene poisoning on Cu-SSZ-13 catalysts for SCR of NOx with NH3. Catal Today 245:16–21

    Article  CAS  Google Scholar 

  39. Raj R, Harold MP, Balakotaiah V (2014) Kinetic modeling of NO selective reduction with C3H6 over Cu-SSZ13 monolithic catalyst. Chem Eng J 254:452–462

    Article  CAS  Google Scholar 

  40. Zhang D, Wang Y, Yang RT (2018) Chemical liquid deposition (CLD)-modified Fe-ZSM-5 for enhanced activity and resistance to C3H6 poisoning in selective catalytic reduction with NH3 (NH3-SCR). Ind Eng Chem Res 57(40):13586–13590

    Article  Google Scholar 

  41. Guo A, Xie K, Lei H, Rizzotto V, Chen L, Fu M, Chen P, Peng Y, Ye D, Simon U (2021) Inhibition effect of phosphorus poisoning on the dynamics and redox of Cu active sites in a Cu-SSZ-13 NH3-SCR catalyst for NOx reduction. Environ Sci Technol 55(18):12619–12629

    Article  CAS  PubMed  Google Scholar 

  42. Chen Z, Bian C, Guo Y, Pang L, Li T (2021) Efficient strategy to regenerate phosphorus-poisoned Cu-SSZ-13 catalysts for the NH3-SCR of NOx: the deactivation and promotion mechanism of phosphorus. ACS Catal 11(21):12963–12976

    Article  CAS  Google Scholar 

  43. Wang A, Xie K, Bernin D, Kumar A, Kamasamudram K, Olsson L (2020) Deactivation mechanism of Cu active sites in Cu/SSZ-13—phosphorus poisoning and the effect of hydrothermal aging. Appl Catal B Environ 269:118781

    Article  CAS  Google Scholar 

  44. Xie K, Woo J, Bernin D, Kumar A, Kamasamudram K, Olsson L (2019) Insights into hydrothermal aging of phosphorus-poisoned Cu-SSZ-13 for NH3-SCR. Appl Catal B Environ 241:205–216

    Article  CAS  Google Scholar 

  45. Jouini H, Mejri I, Martinez-Ortigosa J, Cerillo JL, Petitto C, Mhamdi M, Blasco T, Delahay G (2022) Alkali poisoning of Fe-Cu-ZSM-5 catalyst for the selective catalytic reduction of NO with NH3. Res Chem Intermed 48(8):3415–3428

    Article  CAS  Google Scholar 

  46. Fan C, Chen Z, Pang L, Ming S, Dong C, Brou Albert K, Liu P, Wang J, Zhu D, Chen H, Li T (2018) Steam and alkali resistant Cu-SSZ-13 catalyst for the selective catalytic reduction of NOx in diesel exhaust. Chem Eng J 334:344–354

    Article  CAS  Google Scholar 

  47. Yang G, Du X, Ran J, Wang X, Chen Y, Zhang L, Rac V, Rakic V, Crittenden J (2020) Irregular influence of alkali metals on Cu-SAPO-34 catalyst for selective catalytic reduction of NOx with ammonia. J Hazard Mater 387:122007

    Article  CAS  PubMed  Google Scholar 

  48. Zhu N, Shan W, Shan Y, Du J, Lian Z, Zhang Y, He H (2020) Effects of alkali and alkaline earth metals on Cu-SSZ-39 catalyst for the selective catalytic reduction of NO with NH3. Chem Eng J 388:124250

    Article  CAS  Google Scholar 

  49. Singh S, Bhatia D (2019) Modeling the role of CO and C3H6 in NOx reduction on a Cu-CHA SCR catalyst. Chem Eng J 377:120311

    Article  CAS  Google Scholar 

  50. Kim YJ, Min KM, Lee JK, Hong SB, Cho BK, Nam I-S (2014) Effect of CO2 on the DeNOx activity of a small pore zeolite copper catalyst for NH3/SCR. ChemCatChem 6:1186–1189

    CAS  Google Scholar 

  51. Hudson MR, Queen WL, Mason JA, Fickel DW, Lobo RF, Brown CM (2012) Unconventional, highly selective CO2 adsorption in zeolite SSZ-13. J Am Chem Soc 134(4):1970–1973

    Article  CAS  PubMed  Google Scholar 

  52. Martín N, Paris C, Vennestrøm PNR, Thøgersen JR, Moliner M, Corma A (2017) Cage-based small-pore catalysts for NH3-SCR prepared by combining bulky organic structure directing agents with modified zeolites as reagents. Appl Catal B Environ 217:125–136

    Article  Google Scholar 

  53. Kim YJ, Lee JK, Min KM, Hong SB, Nam I-S, Cho BK (2014) Hydrothermal stability of CuSSZ13 for reducing NOx by NH3. J Catal 311:447–457

    Article  CAS  Google Scholar 

  54. Chokkalingam A, Chaikittisilp W, Iyoki K, Keoh SH, Yanaba Y, Yoshikawa T, Kusamoto T, Okubo T, Wakihara T (2019) Ultrafast synthesis of AFX-Type zeolite with enhanced activity in the selective catalytic reduction of NOx and hydrothermal stability. RSC Adv 9(29):16790–16796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Wang A, Olsson L (2020) Insight into the SO2 poisoning mechanism for NOx removal by NH3-SCR over Cu/LTA and Cu/SSZ-13. Chem Eng J 395:125048

    Article  CAS  Google Scholar 

  56. Li J, Zhu R, Cheng Y, Lambert CK, Yang RT (2010) Mechanism of propene poisoning on Fe-ZSM-5 for selective catalytic reduction of NOx with ammonia. Environ Sci Technol 44:1799–1805

    Article  CAS  PubMed  Google Scholar 

  57. Wang J, Yu T, Wang X, Qi G, Xue J, Shen M, Li W (2012) The influence of silicon on the catalytic properties of Cu/SAPO-34 for NOx reduction by ammonia-SCR. Appl Catal B Environ 127:137–147

    Article  CAS  Google Scholar 

  58. Paolucci C, Parekh AA, Khurana I, Di Iorio JR, Li H, Albarracin Caballero JD, Shih AJ, Anggara T, Delgass WN, Miller JT, Ribeiro FH, Gounder R, Schneider WF (2016) Catalysis in a cage: condition-dependent speciation and dynamics of exchanged Cu cations in SSZ-13 zeolites. J Am Chem Soc 138(18):6028–6048

    Article  CAS  PubMed  Google Scholar 

  59. Shan Y, Shan W, Shi X, Du J, Yu Y, He H (2020) A comparative study of the activity and hydrothermal stability of Al-rich Cu-SSZ-39 and Cu-SSZ-13. Appl Catal B Environ 264:118511

    Article  Google Scholar 

  60. Ming S, Chen Z, Fan C, Pang L, Guo W, Albert KB, Liu P, Li T (2018) The effect of copper loading and silicon content on catalytic activity and hydrothermal stability of Cu-SAPO-18 catalyst for NH3-SCR. Appl Catal A-Gen 559:47–56

    Article  CAS  Google Scholar 

  61. Han S, Tang X, Wang L, Ma Y, Chen W, Wu Q, Zhang L, Zhu Q, Meng X, Zheng A, Xiao F-S (2021) Potassium-directed sustainable synthesis of new high silica small-pore zeolite with KFI structure (ZJM-7) as an efficient catalyst for NH3-SCR reaction. Appl Catal B Environ 281:119480

    Article  CAS  Google Scholar 

  62. Gao F, Washton NM, Wang Y, Kollár M, Szanyi J, Peden CHF (2015) Effects of Si/Al ratio on Cu/SSZ-13 NH3-SCR catalysts: implications for the active Cu species and the roles of Brønsted acidity. J Catal 331:25–38

    Article  CAS  Google Scholar 

  63. Paolucci C, Khurana I, Parekh AA, Li S, Shih AJ, Li H, Di Iorio JR, Caballero A, J D, Yezerets A, Miller J T, Delgass W N, Ribeiro F H, Schneider W F, Gounder R, (2017) Dynamic multinuclear sites formed by mobilized copper ions in NOx selective catalytic reduction. Science 357:898–903

    Article  CAS  PubMed  Google Scholar 

  64. Zhang J, Shan Y, Zhang L, Du J, He H, Han S, Lei C, Wang S, Fan W, Feng Z, Liu X, Meng X, Xiao F-S (2020) Importance of controllable Al sites in CHA framework by crystallization pathways for NH3-SCR reaction. Appl Catal B Environ 277:119193

    Article  CAS  Google Scholar 

  65. Daya R, Joshi SY, Luo J, Dadi RK, Currier NW, Yezerets A (2020) On kinetic modeling of change in active sites upon hydrothermal aging of Cu-SSZ-13. Appl Catal B Environ 263:118368

    Article  CAS  Google Scholar 

  66. Bates SA, Verma AA, Paolucci C, Parekh AA, Anggara T, Yezerets A, Schneider WF, Miller JT, Delgass WN, Ribeiro FH (2014) Identification of the active Cu site in standard selective catalytic reduction with ammonia on Cu-SSZ-13. J Catal 312:87–97

    Article  CAS  Google Scholar 

  67. Beale AM, Lezcano-Gonzalez I, Slawinski WA, Slawinksi WA, Wragg DS (2016) Correlation between Cu ion migration behaviour and deNOx activity in Cu-SSZ-13 for the standard NH3-SCR reaction. Chem Commun 52(36):6170–6173

    Article  CAS  Google Scholar 

  68. Song J, Wang Y, Walter ED, Washton NM, Mei D, Kovarik L, Engelhard MH, Prodinger S, Wang Y, Peden CHF, Gao F (2017) Toward rational design of Cu/SSZ-13 selective catalytic reduction catalysts: Implications from atomic-level understanding of hydrothermal stability. ACS Catal 7(12):8214–8227

    Article  CAS  Google Scholar 

  69. Wang D, Zhang L, Li J, Kamasamudram K, Epling WS (2014) NH3-SCR over Cu/SAPO-34 – zeolite acidity and Cu structure changes as a function of Cu loading. Catal Today 231:64–74

    Article  CAS  Google Scholar 

  70. Xue J, Wang X, Qi G, Wang J, Shen M, Li W (2013) Characterization of copper species over Cu/SAPO-34 in selective catalytic reduction of NOx with ammonia: relationships between active Cu sites and de-NOx performance at low temperature. J Catal 297:56–64

    Article  CAS  Google Scholar 

  71. Xu M, Wang J, Yu T, Wang J, Shen M (2018) New insight into Cu/SAPO-34 preparation procedure: Impact of NH4-SAPO-34 on the structure and Cu distribution in Cu-SAPO-34 NH3-SCR catalysts. Appl Catal B Environ 220:161–170

    Article  CAS  Google Scholar 

  72. Li Z, Yang J, Zhou Y, Cui J, Ma Y, Geng C, Kang Y, Liu J, Yang C (2020) Influence of different preparation methods on the activity of Ce and Mo co-doped ZSM-5 catalysts for the selective catalytic reduction of NOx by NH3. Environ Sci Pollut Res Int 27(32):40495–40503

    Article  CAS  PubMed  Google Scholar 

  73. Gao F, Walter ED, Washton NM, Szanyi J, Peden CHF (2015) Synthesis and evaluation of Cu/SAPO-34 catalysts for NH3-SCR 2: solid-state ion exchange and one-pot synthesis. Appl Catal B Environ 162:501–514

    Article  CAS  Google Scholar 

  74. Xiang X, Yang M, Gao B, Qiao Y, Tian P, Xu S, Liu Z (2016) Direct Cu2+ ion-exchanged into as-synthesized SAPO-34 and its catalytic application in the selective catalytic reduction of NO with NH3. RSC Adv 6(15):12544–12552

    Article  CAS  Google Scholar 

  75. Yu L, Zhong Q, Zhang S (2016) Research of copper contained SAPO-34 zeolite for NH3-SCR DeNOx by solvent-free synthesis with Cu-TEPA. Microporous Mesoporous Mater 234:303–309

    Article  CAS  Google Scholar 

  76. Lv W, Meng P, Qin Z, Li J, Dong M, Wang J, Fan W (2021) A comparison of Al-rich Cu-SSZ-13 zeolites synthesized by different methods in their Al distribution hydrothermal stability and catalytic performance in the selective catalytic reduction of NOx with NH3. Microporous Mesoporous Mater 313:110851

    Article  CAS  Google Scholar 

  77. Han J, Jin X, Song C, Bi Y, Liu Q, Liu C, Ji N, Lu X, Ma D, Li Z (2020) Rapid synthesis and NH3-SCR activity of SSZ-13 zeolite via coal gangue. Green Chem 22(1):219–229

    Article  CAS  Google Scholar 

  78. Usui T, Liu Z, Ibe S, Zhu J, Anand C, Igarashi H, Onaya N, Sasaki Y, Shiramata Y, Kusamoto T, Wakihara T (2018) Improve the hydrothermal stability of Cu-SSZ-13 zeolite catalyst by loading a small amount of Ce. ACS Catal 8(10):9165–9173

    Article  CAS  Google Scholar 

  79. Chen M, Li J, Xue W, Wang S, Han J, Wei Y, Mei D, Li Y, Yu J (2022) Unveiling secondary-ion-promoted catalytic properties of Cu-SSZ-13 zeolites for selective catalytic reduction of NOx. J Am Chem Soc 144(28):12816–12824

    Article  CAS  PubMed  Google Scholar 

  80. Wang Y, Li G, Zhang S, Zhang X, Zhang X, Hao Z (2020) Promoting effect of Ce and Mn addition on Cu-SSZ-39 zeolites for NH3-SCR reaction: activity hydrothermal stability and mechanism study. Chem Eng J 393:124782

    Article  CAS  Google Scholar 

  81. Jiang L, Cai Y, Jin M, Zhu Z, Wang Y (2020) The influence of Ce or Mn doping on Cu-based catalysts for de-NOx with NH3-SCR. J Chem 2020:1–8

    Article  Google Scholar 

  82. Chen Z, Guo L, Qu H, Liu L, Xie H, Zhong Q (2020) Controllable positions of Cu2+ to enhance low-temperature SCR activity on novel Cu-Ce-La-SSZ-13 by a simple one-pot method. Chem Commun 56(15):2360–2363

    Article  CAS  Google Scholar 

  83. Deng D, Deng S, He D, Wang Z, Chen Z, Ji Y, Yan G, Hou G, Liu L, He H (2021) A comparative study of hydrothermal aging effect on cerium and lanthanum doped Cu/SSZ-13 catalysts for NH3-SCR. J Rare Earth 39(8):969–978

    Article  CAS  Google Scholar 

  84. Feng X, Lin Q, Cao Y, Zhang H, Li Y, Xu H, Lin C, Chen Y (2017) Neodymium promotion on the low-temperature hydrothermal stability of a Cu/SAPO-34 NH3-SCR monolith catalyst. J Taiwan Inst Chem E 80:805–812

    Article  CAS  Google Scholar 

  85. Cao Y, Feng X, Xu H, Lan L, Gong M, Chen Y (2016) Novel promotional effect of yttrium on Cu–SAPO-34 monolith catalyst for selective catalytic reduction of NOx by NH3 (NH3-SCR). Catal Commun 76:33–36

    Article  CAS  Google Scholar 

  86. Song C, Zhang L, Li Z, Lu Y, Li K (2019) Co-exchange of Mn: a simple method to improve both the hydrothermal stability and activity of Cu–SSZ-13 NH3–SCR catalysts. Catalysts 9(5):455

    Article  CAS  Google Scholar 

  87. Xu R, Wang Z, Liu N, Dai C, Zhang J, Chen B (2020) Understanding Zn functions on hydrothermal stability in a one-pot-synthesized Cu&Zn-SSZ-13 catalyst for NH3 selective catalytic reduction. ACS Catal 10(11):6197–6212

    Article  CAS  Google Scholar 

  88. Du J, Wang J, Shi X, Shan Y, Zhang Y, He H (2020) Promoting effect of Mn on in situ synthesized Cu-SSZ-13 for NH3-SCR. Catalysts 10(12):1375

    Article  CAS  Google Scholar 

  89. Dong X, Wang J, Zhao H, Li Y (2015) The promotion effect of CeOx on Cu-SAPO-34 catalyst for selective catalytic reduction of NOx with ammonia. Catal Today 258:28–34

    Article  CAS  Google Scholar 

  90. Liu Q, Fu Z, Ma L, Niu H, Liu C, Li J, Zhang Z (2017) MnOx-CeO2 supported on Cu-SSZ-13: a novel SCR catalyst in a wide temperature range. Appl Catal A-Gen 547:146–154

    Article  CAS  Google Scholar 

  91. Zhang T, Qiu F, Li J (2016) Design and synthesis of core-shell structured meso-Cu-SSZ-13@mesoporous aluminosilicate catalyst for SCR of NO with NH3: enhancement of activity hydrothermal stability and propene poisoning resistance. Appl Catal B Environ 195:48–58

    Article  CAS  Google Scholar 

  92. Jia L, Liu J, Huang D, Zhao J, Zhang J, Li K, Li Z, Zhu W, Zhao Z, Liu J (2022) Interface engineering of a bifunctional Cu-SSZ-13@CZO core-shell catalyst for boosting potassium ion and SO2 tolerance. ACS Catal 12(18):11281–11293

    Article  CAS  Google Scholar 

  93. Palčić A, Bruzzese PC, Pyra K, Bertmer M, Góra-Marek K, Poppitz D, Pöppl A, Gläser R, Jabłońska M (2020) Nanosized Cu-SSZ-13 and its application in NH3-SCR. Catalysts 10(5):506

    Article  Google Scholar 

  94. Chen M, Sun Q, Yang G, Chen X, Zhang Q, Zhang Y, Yang X, Yu J (2019) Enhanced performance for selective catalytic reduction of NOx with NH3 over nanosized Cu/SAPO-34 catalysts. ChemCatChem 11(16):3865–3870

    Article  CAS  Google Scholar 

  95. Liang J, Mi Y, Song G, Peng H, Li Y, Yan R, Liu W, Wang Z, Wu P, Liu F (2020) Environmental benign synthesis of Nano-SSZ-13 via FAU trans-crystallization: enhanced NH3-SCR performance on Cu-SSZ-13 with nano-size effect. J Hazard Mater 398:122986

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China [No. 22076136], Hebei Province Major Scientific and Technological Achievement Transformation Fund Support Project [No. 2021004012A] and the central government guides the local science and technology development fund project [No. 206Z3702G].

Author information

Authors and Affiliations

Authors

Contributions

XQ wrote the main manuscript text; YW, CL and QL completed the review and editing of manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Qingling Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, X., Wang, Y., Liu, C. et al. The Challenges and Comprehensive Evolution of Cu-Based Zeolite Catalysts for SCR Systems in Diesel Vehicles: A Review. Catal Surv Asia 27, 181–206 (2023). https://doi.org/10.1007/s10563-022-09384-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-022-09384-6

Keywords

Navigation