Skip to main content
Log in

Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this paper, we report the progress in using paper sizing chemistry to fabricate patterned paper for chemical and biological sensing applications. Patterned paper sizing uses paper sizing agents to selectively hydrophobize certain area of a sheet. The hydrophilic-hydrophobic contrast of the pattern so created has an excellent ability to control capillary penetration of aqueous liquids in channels of the pattern. Incorporating this idea with digital ink jet printing technique, a new fabrication method of paper-based microfluidic devices is established. Ink jet printing can deliver biomolecules and chemicals with precision into the microfluidic patterns to form biological/chemical sensing sites within the patterns, forming the complete sensing devices. This study shows the potential of combining paper sizing chemistry and ink jet printing to produce paper-based sensors at low cost and at commercial volume.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Scheme 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe K, Suzuki K, Citterio D (2008) Inkjet-printed microfluidic multianalyte chemical sensing paper. Anal Chem 80:6928–6934

    Article  CAS  Google Scholar 

  • Blicharz TM, Rissin DM, Bowden M, Hayman RB, DiCesare C, Bhatia JS, Grand-Pierre N, Siqueira WL, Helmerhorst EJ, Loscalzo J, Oppenheim FG, Walt DR (2008) Use of colorimetric test strips for monitoring the effect of hemodialysis on salivary nitrite and uric acid in patients with end-stage renal disease: a proof of principle. Clin Chem 54:1473–1480

    Article  CAS  Google Scholar 

  • Bruzewicz DA, Reches M, Whitesides GM (2008) Low-cost printing of poly(dimethylsiloxane) barriers to define microchannels in paper. Anal Chem 80:3387–3392

    Article  CAS  Google Scholar 

  • Carrilho E, Martinez AW, Whitesides GM (2009) Understanding wax printing: a simple micropatterning process for paper-based microfluidics. Anal Chem 81:7091–7095

    Article  CAS  Google Scholar 

  • Dungchai W, Chailapakul O, Henry CS (2009) Electrochemical detection for paper-based Microfluidics. Anal Chem 81:5821–5826

    Article  CAS  Google Scholar 

  • Hodgson KT, Berg JCJ (1988) The effect of surfactants on wicking flow in fiber networks. Colloid Interface Sci 121:22–31

    Article  CAS  Google Scholar 

  • Hossain SMZ, Luckham RE, McFadden MJ, Brennan JD (2009) Reagentless bidirectional lateral flow bioactive paper sensors for detection of pesticides in beverage and food samples. Anal Chem 81:9055–9064

    Article  CAS  Google Scholar 

  • Kannangara D, Zhang H, Shen W (2006) Liquid-paper interactions during liquid drop impact and recoil on paper surfaces. Colloid Surf A-Physiochem Eng Asp 280:203–215

    Article  CAS  Google Scholar 

  • Li X, Tian J, Nguyen T, Shen W (2008) Paper-based microfluidic devices by plasma treatment. Anal Chem 80:9131–9134

    Article  CAS  Google Scholar 

  • Li X, Tian J, Shen W (2010) Quantitative biomarker assay with microfluidic paper-based analytical devices. Anal Bioanal Chem 396:495–501

    Article  CAS  Google Scholar 

  • Li X, Tian J, Shen W (in press) Thread as a Versatile Material for Low-Cost Microfluidic Diagnostics. ACS Appl Mater Interface doi: 10.1021/am9006148

  • Lu Y, Shi W, Jiang L, Qin J, Lin B (2009) Rapid prototyping of paper-based microfluidics with wax for low-cost, portable bioassay. Electrophoresis 30:1497–1500

    Article  CAS  Google Scholar 

  • Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46:1318–1320

    Article  CAS  Google Scholar 

  • Martinez AW, Phillips ST, Carrilho E, SW ThomasΙΙΙ, Sindi H, Whitesides GM (2008a) Simple telemedicine for developing regions: camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal Chem 80:3699–3707

    Article  CAS  Google Scholar 

  • Martinez AW, Phillips ST, Wiley BJ, Gupta M, Whitesides GM (2008b) Flash: a rapid method for prototyping paper-based microfluidic devices. Lab Chip 8:2146–2150

    Article  CAS  Google Scholar 

  • Nagler RM (2008) Saliva analysis for monitoring dialysis and renal function. Clin Chem 54:1415–1417

    Article  CAS  Google Scholar 

  • Qiao L, Gu QM, Cheng HN (2006) Enzyme-catalyzed synthesis of hydrophobically modified starch. Carbohydr Polym 66:135–140

    Article  CAS  Google Scholar 

  • Risio SD, Yan N (2007) Piezoelectric ink-jet printing of horseradish peroxidase: effect of ink viscosity modifiers on activity. Macromol Rapid Commun 28:1934–1940

    Article  Google Scholar 

  • Seppanen R, Tiberg F, Valignat MP (2000) Nord Pulp Paper Res 15:452–458

    Article  CAS  Google Scholar 

  • Shen W, Parker IH (2001) A preliminary study of the spreading of AKD in the presence of capillary structures. J Colloid Interface Sci 240:172–181

    Article  CAS  Google Scholar 

  • Shen W, Filonanko Y, Truong Y, Parker IH, Brack N, Pigram P, Liesegang J (2000) Contact angle measurement and surface energetics of sized and unsized paper. Colloid Surf A-Physiochem Eng Asp 173:117–126

    Article  CAS  Google Scholar 

  • Shen W, Xu F, Parker IH (2003) An experimental investigation of the redistribution behaviour of alkyl ketene dimers and their corresponding ketones. Colloid Surf A 212:197–209

    Article  CAS  Google Scholar 

  • Stock R, Rice CBF (1974) Chromatographic methods, 3rd edn. Chapman and Hall, London, p 106

    Google Scholar 

  • Vauvreau V, Laroche G (2005) Micropattern printing of adhesion, spreading, and migration peptides on poly(tetrafluoroethylene) films to promote endothelialization. Bioconjugate Chem 16:1088–1097

    Article  Google Scholar 

  • Whitesides GM (2006) The origin and future of microfludics. Nature 442:368–373

    Article  CAS  Google Scholar 

  • Zhang H, Kannangara D, Hilder M, Ettl R, Shen W (2007) The role of vapour deposition in the hydrophobization treatment of cellulose fibres using alkyl ketene dimers and alkenyl succinic acid anhydrides. Colloid Surf A 297:203–210

    Article  CAS  Google Scholar 

  • Zhao W, van der Berg A (2008) Lab on Paper. Lab Chip 8:1988–1991

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The research scholarships of Monash University and the Department of Chemical Engineering are gratefully acknowledged. BASF and Hercules Australia are thanked for kindly providing paper sizing agents.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Shen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, X., Tian, J. & Shen, W. Progress in patterned paper sizing for fabrication of paper-based microfluidic sensors. Cellulose 17, 649–659 (2010). https://doi.org/10.1007/s10570-010-9401-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-010-9401-2

Keywords

Navigation