Skip to main content
Log in

Structure and properties of conducting bacterial cellulose-polyaniline nanocomposites

  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Conducting composite membranes of bacterial cellulose (BC) and polyaniline doped with dodecylbenzene sulfonic acid (PAni.DBSA) were successfully prepared by the in situ chemical polymerization of aniline in the presence of hydrated BC sheets. The polymerization was performed with ammonium peroxydisulfate as the oxidant agent and different amounts of DBSA. The composites were characterized by X-ray diffraction, attenuation reflectance Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), impedance spectroscopy and small angle X ray scattering (SAXS). The highest electrical conductivity value was achieved by using a DBSA/aniline molar ratio of 1.5 because this condition provided a better penetration of PAni.DBSA chains inside the hydrated BC sheet, as observed by SEM. The in situ polymerization gives rise to conducting membranes with the surface constituted by different degree roughness as indicated by Nyquist plots obtained from impedance spectroscopy and confirmed by SAXS measurements. This preliminary work provides a new way to prepare cellulose-polyaniline conducting membranes which find potential applications as electronic devices, sensors, intelligent clothes, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ansari R, Pornahad A (2010) Removal of Ce(IV) Ions from aqueous solutions using sawdust coated by electroactive polymers. Sep Sci Technol 45:2376–2382

    Article  CAS  Google Scholar 

  • Babazadeh M (2007) A direct one-pot method for synthesis of polyaniline doped with dodecyl benzene sulphonic acid in aqueous medium and study of its thermal properties. Iran Polym J 16:389–396

    CAS  Google Scholar 

  • Barud HS, Barrios C, Regiani T, Marques RFC, Verelst M, Dexpert-Ghys J, Messaddeq Y, Ribeiro SJL (2008) Self-supported silver nanoparticles containing bacterial cellulose membranes. Mater Sci Eng C-Biomimetic Supramol Syst 28:515–518

    Article  CAS  Google Scholar 

  • Brown EE, Laborie MPG (2007) Bloengineering bacterial cellulose/poly(ethylene oxide) nanocomposites. Biomacromolecules 8:3074–3081

    Article  CAS  Google Scholar 

  • Cannon RE, Anderson SM (1991) Biogenesis of bacterial cellulose. Crit Rev Microbiol 17:435–447

    Article  CAS  Google Scholar 

  • Castagno KRL, Dalmoro V, Mauler RS, Azambuja DS (2010) Characterization and corrosion protection properties of polypirrole/montmorillonite electropolymerized onto aluminium alloy 1100. J Polym Res 17:647–655

    Article  CAS  Google Scholar 

  • Chen P, Yun YS, Bak H, Cho SY, Jin HJ (2010) Multiwalled carbon nanotubes-embedded electrospun bacterial cellulose nanofibers. Mol Cryst Liq Cryst 519:169–178

    Article  CAS  Google Scholar 

  • Czaja W, Krystynowicz A, Bielecki S, Brown RM (2006) Microbial cellulose—the natural power to heal wounds. Biomaterials 27:145–151

    Article  CAS  Google Scholar 

  • Dufresne A, Belgacem MN (2010) Cellulose-reinforced composites: from micro-to nanoscale. Polímeros: Ciência e Tecnologia 20:1–10

  • Farah LFX (1990) Process for the preparation of cellulose film, cellulose film produced thereby, artificial skin graft and its use. Bio Fill Produtos Biotechnologicos S.A. (Parana, BR), US patent no. 4,912,049

  • Gardner KH, Blackwell J (1975) Refinement of structure of beta-chitin. Biopolymer 14:1581–1595

    Article  CAS  Google Scholar 

  • Goto H (2011) Electrically conducting paper from a polyaniline/pulp composite and paper folding art work for a 3D object. Text Res J 81:122–127

    Article  CAS  Google Scholar 

  • Grande CJ, Torres FG, Gomez CM, Bano MC (2009) Nanocomposites of bacterial cellulose/hydroxyapatite for biomedical applications. Acta Biomater 5:1605–1615

    Article  CAS  Google Scholar 

  • Holt BL, Stoyanov SD, Pelan E, Paunov VN (2010) Novel anisotropic materials from functionalised colloidal cellulose and cellulose derivatives. J Mater Chem 20:10058–10070

    Article  CAS  Google Scholar 

  • Huang JG, Ichinose I, Kunitake T (2005) Nanocoating of natural cellulose fibers with conjugated polymer: hierarchical polypyrrole composite materials. Chem Commun, 1717–1719

  • Iguchi M, Yamanaka S, Budhiono A (2000) Bacterial cellulose—a masterpiece of nature’s arts. J Mater Sci 35:261–270

    Article  CAS  Google Scholar 

  • Johnston JH, Moraes J, Borrmann T (2005) Conducting polymers on paper fibres. Synth Met 153:65–68

    Article  CAS  Google Scholar 

  • Johnston JH, Kelly FM, Moraes J, Borrmann T, Flynn D (2006) Conducting polymer composites with cellulose and protein fibres. Curr Appl Phys 6:587–590

    Article  Google Scholar 

  • Kamel S (2007) Nanotechnology and its applications in lignocellulosic composites, a mini review. Express Polym Lett 1:546–575

    Article  CAS  Google Scholar 

  • Kelly FM, Johnston JH, Borrmann T, Richardson MJ (2007) Functionalised hybrid materials of conducting polymers with individual fibres of cellulose. Eur J Inorg Chem, 5571–5577

  • Klemm D Kramer F Kamitakahara H (2006) Materials and composites from cellulose with well-defined molecular and supramolecular order. Abstracts of papers of the Am Chem Soc 231, 67-CELL

    Google Scholar 

  • Klemm D, Schumann D, Udhardt U, Marsch S (2001) Bacterial synthesized cellulose—artificial blood vessels for microsurgery. Prog Polym Sci 26:1561–1603

    Article  CAS  Google Scholar 

  • Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: Fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44:3358–3393

    Article  CAS  Google Scholar 

  • Klemm D, Schumann D, Kramer F, Hessler N, Hornung M, Schmauder HP, Marsch S (2006) Nanocelluloses as innovative polymers in research and application. Polysaccharides Ii 205:49–96

    Article  CAS  Google Scholar 

  • Kobayashi T, Yoneyama H, Tamura H (1984) Oxidative-degradation pathway of polyaniline film electrodes. J Electroanal Chem 177:293–297

    Article  CAS  Google Scholar 

  • Maneerung T, Tokura S, Rujiravanit R (2008) Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing. Carbohydr Polym 72:43–51

    Article  CAS  Google Scholar 

  • Mihranyan A, Nyholm L, Bennett AEG, Stromme M (2008) Novel high specific surface area conducting paper material composed of polypyrrole and Cladophora cellulose. J Phys Chem B 112:12249–12255

    Article  CAS  Google Scholar 

  • Müller D, Rambo C, Recouvreux D, Porto L, Barra G (2011) Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synth Met 161:106–111

    Article  Google Scholar 

  • Nystrom G, Mihranyan A, Razaq A, Lindstrom T, Nyholm L, Stromme M (2010) A nanocellulose polypyrrole composite based on microfibrillated cellulose from wood. J Phys Chem B 114:4178–4182

    Article  Google Scholar 

  • Ohlan A, Singh K, Chandra A, Singh VN, Dhawan SK (2009) Conjugated polymer nanocomposites: synthesis, dielectric, and microwave absorption studies. J Appl Phys 106:044305

    Article  Google Scholar 

  • Paakko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4:2492–2499

    Article  CAS  Google Scholar 

  • Qian XR, Shen J, Yu G, An XH (2010) Influence of pulp fiber substrate on conductivity of polyaniline-coated conductive paper prepared by in situ polymerization. Bioresources 5:899–907

    CAS  Google Scholar 

  • Ray S, Easteal AJ, Cooney RP, Edmonds NR (2009) Structure and properties of melt-processed PVDF/PMMA/polyaniline blends. Mat Chem Phys 113:829–838

    Article  CAS  Google Scholar 

  • Ruland W (1961) X-ray determination of crystallinity and diffuse disorder scattering. Acta Crystallogr A 14:1180

    Article  CAS  Google Scholar 

  • Santa Maria LC, Santos ALC, Oliveira PC, Barud HS, Messaddeq Y, Ribeiro SJL (2009) Synthesis and characterization of silver nanoparticles impregnated into bacterial cellulose. Mater Lett 63:797–799

    Article  Google Scholar 

  • Santa Maria LC, Santos ALC, Oliveira PC, Valle ASS, Barud HS, Messaddeq Y, Ribeiro SJL (2010) Preparation and antibacterial activity of silver nanoparticles impregnated in bacterial cellulose. Polimeros-Ciencia E Tecnologia 20:72–77

    Google Scholar 

  • Sapurina I, Kazantseva NE, Ryvkina NG, Prokes J, Saha P, Stejskal J (2005) Electromagnetic radiation shielding by composites of conducting polymers and wood. J Appl Polym Sci 95:807–814

    Article  CAS  Google Scholar 

  • Shah J, Brown RM (2005) Towards electronic paper displays made from microbial cellulose. Appl Microbiol Biotechnol 66:352–355

    Article  CAS  Google Scholar 

  • Siro I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17:459–494

    Article  CAS  Google Scholar 

  • Skale S, Dolecek V, Slemnik M (2007) Substitution of the constant phase element by Warburg impedance for protective coatings. Corros Sci 49:1045–1055

    Article  CAS  Google Scholar 

  • Soares BG, Leyva ME, Barra GMO, Khastgir D (2006) Dielectric behavior of polyaniline synthesized by different techniques. Eur Polym J 42:676–686

    Article  CAS  Google Scholar 

  • Stejskal J, Trchova M, Brodinova J, Sapurina I (2007) Flame retardancy afforded by polyaniline deposited on wood. J Appl Polym Sci 103:24–30

    Article  CAS  Google Scholar 

  • Stejskal J, Trchova M, Kovarova J, Prokes J, Omastova M (2008) Polyaniline-coated cellulose fibers decorated with silver nanoparticles. Chem Pap 62:181–186

    Article  CAS  Google Scholar 

  • Stromme M, Mihranyan A, Ek R (2002) What to do with all these algae? Mater Lett 57:569–572

    Article  CAS  Google Scholar 

  • Tsotcheva D, Tsanov T, Terlemezyan L, Vassilev S (2001) Structural investigations of polyaniline prepared in the presence of dodecylbenzenesulfonic acid. J Therm Anal Calorim 63:133–141

    Article  CAS  Google Scholar 

  • van den Berg O, Schroeter M, Capadona JR, Weder C (2007) Nanocomposites based on cellulose whiskers and (semi)conducting conjugated polymers. J Mater Chem 17:2746–2753

    Article  Google Scholar 

  • Watanabe K, Tabuchi M, Morinaga Y, Yoshinaga F (1998) Structural features and properties of bacterial cellulose produced in agitated culture. Cellulose 5:187–200

    Article  CAS  Google Scholar 

  • Yan ZY, Chen SY, Wang HP, Wang B, Wang CS, Jiang JM (2008) Cellulose synthesized by Acetobacter xylinum in the presence of multi-walled carbon nanotubes. Carbohydr Res 343:73–80

    Article  CAS  Google Scholar 

  • Yoon SH, Jin HJ, Kook MC, Pyun YR (2006) Electrically conductive bacterial cellulose by incorporation of carbon nanotubes. Biomacromolecules 7:1280–1284

    Article  CAS  Google Scholar 

  • Yuan X-Z, Song C, Wang H, Zhang J (2010) Electrochemical impedance spectroscopy in PEM fuel cells, fundamentals and applications. Springer, London

    Book  Google Scholar 

Download references

Acknowledgments

The authors thank CNPq, FINEP and FAPERJ for the financial support and scholarships. The authors also acknowledge the Brazilian Synchrotron Laboratory (LNLS) for the support on SAXS experiments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bluma G. Soares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marins, J.A., Soares, B.G., Dahmouche, K. et al. Structure and properties of conducting bacterial cellulose-polyaniline nanocomposites. Cellulose 18, 1285–1294 (2011). https://doi.org/10.1007/s10570-011-9565-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-011-9565-4

Keywords

Navigation