Skip to main content

Advertisement

Log in

Cu-coated cellulose nanopaper for green and low-cost electronics

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

In this work we have developed low-cost, renewable and sustainable materials based on cellulose for electronic applications. The UV–Vis spectroscopy, water contact angle and differential scanning calorimetry results reveal a marked effect of absorbed water on the physical properties of cellulose nanopaper. Morphological observations reveal that the TEMPO oxidized cellulose-based foils were successfully covered by a 200-nm-thick copper layer by DC sputtering. The obtained low surface roughness, porosity and hydrophilicity of the nanopaper allow an efficient deposition of Cu on synthesized nanopaper. The thermal stability of cellulose nanopaper is markedly increased from 240 to 324 °C after Cu sputtering, results that are especially interesting for applications in which devices should withstand high temperatures. Dynamic mechanical analysis shows that the Cu-covered nanopaper maintains its mechanical stiffness up to ~180 °C. Finally, dielectric spectroscopy measurements reveal that developed Cu-coated nanopaper could emerge as a suitable bio-based material for radiofrequency applications. In this work we explore sputter coating as an alternative method to reduce the intrinsic hydrophilicity of synthesized nanopaper instead of including a polymer in the nanocellulose or functionalizing its surface chemically. The obtained findings highlight the potential application of transparent and mechanically robust cellulose nanopaper in the field of electronics and communication engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ahmad Z (2013) Polymer dielectric materials. Ed. Marius Alexandru Silashi

  • Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York

    Google Scholar 

  • ASTM-D1746-03 (2003) “Standard Test Method for Transparency of Plastic Sheeting”, American Society for Testing and Materials, West Conshohocken, PA, 8.01, 398–401

  • Carrasco F, Mutjé P, Pelach MA (1998) Control of retention in papermaking by colloid titration and zeta potential techniques. Wood Sci Technol 32:145–155

    Article  CAS  Google Scholar 

  • Colom X, Carrillo F (2002) Crystallinity changes in lyocell and viscose-type fibers by caustic treatment. Eur Polym J 38:2225–2230

    Article  CAS  Google Scholar 

  • Cui Y, Ma H, Saha T, Ekanayake C (2015) Understanding moisture dynamics and its effect on the dielectric response of transformer insulation. IEEE Trans Power Deliv 30:2195–2204

    Article  Google Scholar 

  • Delgado-Aguilar M, Tovar IG, Tarrés Q, Alcalá M, Pèlach MÀ, Mutjé P (2015) Approaching a low-cost production of cellulose nanofibers for papermaking applications. BioResources 10:5345–5355

    CAS  Google Scholar 

  • Eder F, Klauk H, Halik M, Zschieschang U, Schmid G, Dehm C (2004) Organic electronics on paper. Appl Phys Lett 84:2673–2675

    Article  CAS  Google Scholar 

  • Ferrari AC et al (2015) Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale 7:4598

    Article  CAS  Google Scholar 

  • Flexible Electronics Market by Components—Analysis & Forecast to 2014–2020. Markets and Markets. http://www.marketsandmarkets.com/PressReleases/flexible-electronics.asp. Accessed 03 Nov 2015

  • Fukuzumi H, Saito T, Iwata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromolecules 10:162–165

    Article  CAS  Google Scholar 

  • Galland S, Leterrier Y, Nardi T, Plummer CJG, Månson JAE, Berglund LA (2014) UV-cured cellulose nanofiber composites with moisture durable oxygen barrier properties. J Appl Polym Sci 131:40604

    Article  Google Scholar 

  • Gao K, Shao Z, Wu X, Wang X, Li J, Zhang Y, Wang F (2013) Cellulose nanofibers/reduced graphene oxide flexible transparent conductive paper. Carbohydr Polym 97:243–251

    Article  CAS  Google Scholar 

  • Harper CA, Petrie EM (2003) Plastics materials and processes: a concise encyclopedia. Wiley, Hoboken, New Jersey

    Book  Google Scholar 

  • Henriksson M, Berglund LA, Isaksson P, Lindstrom T, Nishino T (2008) Cellulose nanopaper structures of high toughness. Cellulose 9:1579–1585

    CAS  Google Scholar 

  • Hu L, Zheng G, Yao J, Liu N, Weil B, Eskilsson M, Karabulut E, Ruan Z, Fan S, Bloking JT, McGehee MD, Wågberg L, Cui Y (2013) Transparent and conductive paper from nanocellulose fibers. Energy Environ Sci 6:513–518

    Article  CAS  Google Scholar 

  • Huang J, Zhu H, Chen Y, Preston C, Rohrbach K, Cumings J, Hu L (2013) Highly transparent and flexible nanopaper transistors. ACS Nano 7:2106–2113

    Article  CAS  Google Scholar 

  • Inui T, Koga H, Nogi M, Komoda N, Suganuma K (2015) A miniaturized flexible antenna printed on a high dielectric constant nanopaper composite. Adv Mater 27:1112–1116

    Article  CAS  Google Scholar 

  • Jung YH, Chang TH, Zhang H, Yao C, Zheng Q, Yang VW, Mi H, Kim M, Cho SJ, Park DW, Jiang H, Lee J, Qiu Y, Zhou W, Cai Z, Gong S, Ma Z (2015) High-performance green flexible electronics based on biodegradable cellulose nanofibril paper. Nat Commun 6:7170

    Article  Google Scholar 

  • Kiziltas E, Kiziltas A, Bollin SC, Gardner DJ (2015) Preparation and characterization of transparent PMMA–cellulose-based nanocomposites. Carbohydr Polym 127:381–389

    Article  Google Scholar 

  • Ko SH, Pan H, Grigoropoulos CP, Luscombe CK, Fréchet JMJ et al (2007) All inkjet printed flexible electronics fabrication on a polymer substrate by low temperature high resolution selective laser sintering of metal nanoparticles. Nanotechnology 18:345202

    Article  Google Scholar 

  • Li Y, Lin M, Davenport JV (2011) Ab initio studies of cellulose I: crystal structure, intermolecular forces, and interactions with water. J Phys Chem C 115:11533–11539

    Article  CAS  Google Scholar 

  • Lizundia E, Petisco S, Sarasua JR (2013) Phase-structure and mechanical properties of isothermally melt- and cold-crystallized poly (L-lactide). J Mech Behav Biomed Mater 17:242–251

    Article  CAS  Google Scholar 

  • Lizundia E, Vilas JL, León LM (2015a) Crystallization, structural relaxation and thermal degradation kinetics in poly(L-lactide)/cellulose nanocrystal renewable nanocomposites. Carbohydr Polym 123C:256–265

    Article  Google Scholar 

  • Lizundia E, Ruiz-Rubio L, Vilas JL, León LM (2015b) Poly(l-lactide)/ZnO nanocomposites as efficient UV-shielding coatings for packaging applications. J Appl Polym Sci 132:42426

    Google Scholar 

  • Lizundia E, Urruchi A, Vilas JL, León LM (2016a) Increased functional properties and thermal stability of flexible cellulose nanocrystal/ZnO films. Carbohydr Polym 136:250–258

    Article  CAS  Google Scholar 

  • Lizundia E, Fortunati E, Dominici F, Vilas JL, León LM, Armentano I, Torre L, Kenny JM (2016b) PLLA-grafted cellulose nanocrystals: role of the CNC content andgrafting on the PLA bionanocomposite film properties. Carbohydr Polym 142:105–113

    Article  CAS  Google Scholar 

  • Martinez-Abadia M, Robles-Hernandez B, Villacampa B, de la Fuente MR, Gimenez R, Rosa MB (2015) Cyanostilbene bent-core molecules: a route to functional materials. J Mater Chem C 3:3038–3048

    Article  CAS  Google Scholar 

  • Nathan A, Ahnood A, Cole MT, Lee S, Suzuki Y, Hiralal P, Bonaccorso F, Hasan T, Garcia-Gancedo L, Dyadyusha A, Haque S, Andrew P, Hofmann S, Moultrie J, Chu D, Flewitt AJ, Ferrari AC, Kelly MJ, Robertson J, Amaratunga G, Milne WI (2012) Flexible electronics: the next ubiquitous platform. Proc IEEE 100:1486–1517

    Article  Google Scholar 

  • Nishino T, Matsuda I, Hirao K (2004) All-cellulose composite. Macromolecules 37:7683–7687

    Article  CAS  Google Scholar 

  • Nogi M, Komoda N, Otsuka K, Suganuma K (2013) Foldable nanopaper antennas for origami electronics. Nanoscale 5:4395–4399

    Article  CAS  Google Scholar 

  • Park S, Lee KS, Bozoklu G, Cai W, Nguyen ST, Ruoff RS (2008) Graphene oxide papers modified by divalent ions—enhancing mechanical properties via chemical cross-linking. ACS Nano 2:572–578

    Article  CAS  Google Scholar 

  • Pramila S, Fulekar MH, Bhawana P (2012) E. -waste- a challenge for tomorrow. Res J Recent Sci 1:86–93

    Google Scholar 

  • Qi H, Chang C, Zhang L (2009) Properties and applications of biodegradable transparent and photoluminescent cellulose films prepared via a green process. Green Chem 11:177–184

    Article  CAS  Google Scholar 

  • Rodionova G, Lenes M, Eriksen O, Gregersen O (2011) Surface chemical modification of microfibrillated cellulose: improvement of barrier properties for packaging applications. Cellulose 18:127–134

    Article  CAS  Google Scholar 

  • Roig F, Dantras E, Dandurand J, Lacabanne C (2011) Influence of hydrogen bonds on glass transition and dielectric relaxations of cellulose. J Phys D Appl Phys 44:045403

    Article  Google Scholar 

  • Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5:1983–1989

    Article  CAS  Google Scholar 

  • Saito T, Kimura S, Nishyama Y, Isogai A (2008) Cellulose nanofiber prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8:2485–2491

    Article  Google Scholar 

  • Sehaqui H, Liu A, Zhou Q, Berglund LA (2010) Fast preparation procedure for large, flat cellulose and cellulose/inorganic nanopaper structures. Biomacromolecules 11:2195–2198

    Article  CAS  Google Scholar 

  • Sehaqui H, Zhou Q, Ikkala O, Berglund LA (2011) Strong and tough cellulose nanopaper with high specific surface area and porosity. Biomacromolecules 12:3638–3644

    Article  CAS  Google Scholar 

  • Sehaqui H, Zimmermann T, Tingaut P (2014) Hydrophobic cellulose nanopaper through a mild esterification procedure. Cellulose 21:367–382

    Article  CAS  Google Scholar 

  • Wang F, Chen Z, Xiao L, Qu B, Gong Q (2010) Papery solar cells based on dielectric/metal hybrid transparent cathode. Sol Energ Mat Sol Cells 94:1270–1274

    Article  CAS  Google Scholar 

  • Wei Q, Shao D, Deng B, Xu Y (2009) Comparative studies of polypropylene nonwoven sputtered with ITO and AZO. J Appl Polym Sci 114:1813–1819

  • Wei H, Rodriguez K, Renneckarbd S, Vikesland PJ (2014) Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ Sci Nano 1:302

    Article  CAS  Google Scholar 

  • Yano H, Sugiyama J, Nakagaito AN, Nogi M, Matsuura T, Hikita M, Handa K (2005) Optically transparent composites reinforced with networks of bacterial nanofibers. Adv Mater 17:153–155

    Article  CAS  Google Scholar 

  • Zhou Y, Fuentes-Hernandez C, Khan TM, Liu JC, Hsu J, Shim JW, Dindar A, Youngblood JP, Moon RJ, Kippelen B (2013) Recyclable organic solar cells on cellulose nanocrystal substrates. Sci Rep 3:1536

    Google Scholar 

  • Zhu H, Zhiqiang F, Preston C, Li Y, Hu L (2014a) Transparent paper: fabrication, properties, and device applications. Energy Environ Sci 7:269–287

    Article  CAS  Google Scholar 

  • Zhu H, Narakathu BB, Fang Z, Aijazi AT, Joyce M, Atashbarb M, Hu L (2014b) A gravure printed antenna on shape-stable transparent nanopaper. Nanoscale 6:9110–9115

    Article  CAS  Google Scholar 

Download references

Acknowledgments

E.L. thanks the University of the Basque Country (UPV/EHU) for a postdoctoral fellowship. Technical and human support provided by SGIker (UPV/EHU, MICINN, GV/EJ, EGEF and ESF) is gratefully acknowledged. The authors thank the Basque Country Government for financial support (Ayudas para apoyar las actividades de los grupos de investigación del sistema universitario vasco, IT718-13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erlantz Lizundia.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 859 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lizundia, E., Delgado-Aguilar, M., Mutjé, P. et al. Cu-coated cellulose nanopaper for green and low-cost electronics. Cellulose 23, 1997–2010 (2016). https://doi.org/10.1007/s10570-016-0920-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-016-0920-3

Keywords

Navigation