Skip to main content
Log in

Chemically imaging the interaction of acetylated nanocrystalline cellulose (NCC) with a polylactic acid (PLA) polymer matrix

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

The non-covalent interaction of acetylated nanocrystalline cellulose (AC-NCC) with polylactic acid (PLA) in a composite blend has been studied at the micron scale by synchrotron Fourier transform infrared (FTIR) microspectroscopy. Microtomed sections of AC-NCC in PLA showed strong, localized carbonyl stretching (νC=O) absorbance characteristic of the cellulose acetylation, and this was observed on the surface of larger aggregated AC-NCC particles. A shift in the νC=O IR absorption peak of AC-NCC in PLA, relative to unblended AC-NCC was observed, which is indicative of an intermolecular interaction between AC-NCC and PLA matrix. Acetylation can therefore potentially improve the performance of the composite by enabling linkages between carbonyl groups, helping to establish a good stress transfer between the fiber and the matrix. This could in turn lead to a material with high yield elastic modulus. This is the first reported chemical imaging of acetylated nanocrystalline cellulose-based composite materials using synchrotron FTIR microspectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bartlett GL, Choudhary A, Raines RT, Woolfson DN (2010) n → π* interactions in proteins. Nat Chem Biol 6:615–620. doi:10.1038/nchembio.406

    Article  CAS  Google Scholar 

  • Bassan P, Kohler A, Martens H, Lee J, Byrne HJ, Dumas P, Ehsan G, Brown M, Clarke N, Gardner P (2010) Resonant Mie scattering (RMieS) correction of infrared spectra from highly scattering biological samples. Analyst 135:268–277. doi:10.1039/b921056c

    Article  CAS  Google Scholar 

  • Braun B, Dorgan JR (2009) Single-step method for the isolation and surface functionalization of cellulosic nanowhiskers. Biomacromolecules 10:334–341. doi:10.1021/bm8011117

    Article  CAS  Google Scholar 

  • Ching YC, Ali ME, Abdullah LC, Choo KW, Kuan YC, Julaihi SJ, Chuah CH, Liou N-S (2016) Rheological properties of cellulose nanocrystal-embedded polymer composites: a review. Cellulose 23:1011–1030. doi:10.1007/s10570-016-0868-3

    Article  CAS  Google Scholar 

  • Ciprari D, Jacob K, Tannenbaum R (2006) Characterization of polymer nanocomposite interphase and its impact on mechanical properties. Macromolecules 39:6565–6573. doi:10.1021/ma0602270

    Article  CAS  Google Scholar 

  • Clemons C, Sedlmair J, Illman B, Ibach R, Hirschmugl C (2013) Chemically imaging the effects of the addition of nanofibrillated cellulose on the distribution of poly (lactic acid) in poly (vinyl alcohol). Polymer 54:2058–2061. doi:10.1016/j.polymer.2013.02.016

    Article  CAS  Google Scholar 

  • Duncan WD, Williams GP (1983) Infrared synchrotron radiation from electron storage rings. Appl Opt 22:2914–2923. doi:10.1364/AO.22.002914

    Article  CAS  Google Scholar 

  • Eichorn S, Dufresne A, Aranguren M, Marcovich N, Capadona J, Rowan S, Weder C et al (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33. doi:10.1007/s10853-009-3874-0

    Article  Google Scholar 

  • Evans GR, Niederbichler AD, Chauvin P, Herman S, Bogle M, Otta L, Wang B, Patrick CW Jr (2000) Clinical long term in vivo evaluation of poly (l-lactic acid) porous conduits for peripheral nerve regeneration. J Biomater Sci Polym Ed 11:869–878. doi:10.1163/156856200744066

    Article  CAS  Google Scholar 

  • Flory PJ (1941) Thermodynamics of high polymer solutions. J Chem Phys 9:660. doi:10.1063/1.1723621

    Article  CAS  Google Scholar 

  • Heraud P, Caine S, Campanale N, Karnezis T, McNaughton D, Wood BR, Tobin MJ, Bernard CCA (2010) Early detection of the chemical changes occurring during the induction and prevention of autoimmune-mediated demyelination detected by FT-IR imaging. NeuroImage 49:1180–1189. doi:10.1016/j.neuroimage.2009.09.053

    Article  Google Scholar 

  • Huda MS, Drzal LT, Misra M, Mohanty AK (2006) Wood-fiber-reinforced poly(lactic acid) composites: evaluation of the physicomechanical and morphological properties. J Appl Polym Sci 102:4856–4869. doi:10.1002/app.24829

    Article  CAS  Google Scholar 

  • Kamer KJ, Choudhary A, Raines RT (2012) Intimate interactions with carbonyl groups: dipole–dipole or n → π*? J Org Chem 78:2099–2103. doi:10.1021/jo302265k

    Article  Google Scholar 

  • Kashiwagi T, Du F, Douglas JF, Winey KI, Harris RH, Shields JR (2005) Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat Mater 4:928–933. doi:10.1038/nmat1502

    Article  CAS  Google Scholar 

  • Khare HS, Burris DL (2010) A quantitative method for measuring nanocomposite dispersion. Polymer 51:719–729. doi:10.1016/j.polymer.2009.12.031

    Article  CAS  Google Scholar 

  • Koenig JL (1999) Spectroscopy of polymers, 2nd ed. Elsevier, Amsterdam. ISBN: 0-444-10031-8

  • Labardi M, Prevosto D, Nguyen KH, Capaccioli S, Lucchest M, Rolla P (2010) Local dielectric spectroscopy of nanocomposites materials interfaces. J Vac Sci Technol, B 28:11–17. doi:10.1116/1.3368597

    Article  Google Scholar 

  • Lin N, Huang J, Chang PR, Feng JY (2011) Surface acetylation of cellulose nanocrystals and its reinforcing function in poly (lactic acid). Carbohydr Polym 83:1834–1842. doi:10.1016/j.carbpol.2010.10.047

    Article  CAS  Google Scholar 

  • Lu JZ, Negulesau II, Wu Q (2005) Maleated wood-fiber/high density polyethylene composites: coupling mechanisms and interfacial characterization. Compos Interphase 12:125–140. doi:10.1163/1568554053542133

    Article  CAS  Google Scholar 

  • Mukherjee T, Sani M, Kao N, Gupta RK, Quazi N, Bhattacharya S (2013) Improved dispersion of cellulose microcrystals in polylactic acid (PLA) based composites applying surface acetylation. Chem Eng 101:655–662. doi:10.1016/j.ces.2013.07.032

    Article  CAS  Google Scholar 

  • Needleman A, Borders TL, Brinson LC, Flores VM, Schadler LS (2010) Effect of interphase region on debonding of a CNT reinforced polymer nanocomposites. Compos Sci Technol 70:2207–2215. doi:10.1016/j.compscitech.2010.09.002

    Article  CAS  Google Scholar 

  • Newberry RW, Raines RT (2013) n → π* interactions in poly(lactic acid) suggest a role in protein folding. Chem Commun 49:7699–7701. doi:10.1039/c3cc44317e

    Article  CAS  Google Scholar 

  • Oksman K, Mathew AP, Bondeson D, Kvien I (2006) Manufacturing process of cellulose whiskers/polylactic acid nanocomposites. Compos Sci Technol 66:2776–2784. doi:10.1016/j.compscitech.2006.03.002

    Article  CAS  Google Scholar 

  • Osmond G, Boon JJ, Puskar L, Drennan J (2012) Metal stearate distributions in modern artists’ oil paints: surface and cross sectional investigation of reference paint films using conventional and synchrotron infrared microspectroscopy. Appl Spectrosc 66:1136–1144. doi:10.1366/12-06659

    Article  CAS  Google Scholar 

  • Pakzad A, Simonsen J, Yassar RS (2012) Gradient of nanomechanical properties in the interphase of cellulose nanocrystal composites. Comp Sci Technol 72:314–319. doi:10.1016/j.compscitech.2011.11.020

    Article  CAS  Google Scholar 

  • Pei A, Zhou Q, Berglund LA (2010) Functionalized cellulose nanocrystals as biobased nucleation agents in poly(l-lactide) (Plla)—crystallization and mechanical property effects. Compos Sci Technol 70:815–821. doi:10.1016/j.compscitech.2010.01.018

    Article  CAS  Google Scholar 

  • Pracella M, Haque MU, Alvarez V (2010) Functionalization, compatibilization and properties of polyolefin composites with natural fibers. Polymers 2:554–574. doi:10.3390/polym2040554

    Article  CAS  Google Scholar 

  • Priestley RD, Ellison CJ, Broadbelt LJ, Torkelson JM (2005) Structural relaxation of polymer glasses at surfaces, interfaces and in between. Science 309:456–459. doi:10.1126/science.1112217

    Article  CAS  Google Scholar 

  • Rittingstein P, Torkelson JM (2006) Polymer − nanoparticle interfacial interactions in polymer nanocomposites: confinement effects on glass transition temperature and suppression of physical aging. J Polym Sci, Part B: Polym Phys 44:2935–2943. doi:10.1038/nmat1870

    Article  Google Scholar 

  • Rittingstein P, Priestly RD, Broadbelt LJ, Torkelson JM (2007) Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat Mater 6:278–282. doi:10.1038/nmat1870

    Article  Google Scholar 

  • Roth CB, Jager KL, Torkelson JM (2007) Eliminating the enhanced mobility at the free surface of polystyrene: fluororescence studies of the glass transition temperature in thin bilayer films of immiscible polymers. Macromolecules 40:2568–2574. doi:10.1021/ma062864w

    Article  CAS  Google Scholar 

  • Roy M, Nelson JK, MacCrone RK, Schadler LS (2005) Nanocomposite dielectrics-the role of the interface. IEEE Trans Dielectr Electr Insul 12:629–643. doi:10.1109/TDEI.2005.1511089

    Article  CAS  Google Scholar 

  • Russell RA, Darwish TA, Puskar L, Martin DE, Holden PE, Foster LJR (2014) Deuterated polymers for probing phase separation using infrared microspectroscopy. Biomacromolecules 15:644–649. doi:10.1021/bm4017012

    Article  CAS  Google Scholar 

  • Široký J, Blackburn RS, Bechtold T, Taylor J, White P (2010) Attenuated total reflectance Fourier-transform Infrared spectroscopy analysis of crystallinity changes in lyocell following continuous treatment with sodium hydroxide. Cellulose 17:103–115. doi:10.1007/s10570-009-9378-x

    Article  Google Scholar 

  • Tobin MJ, Puskar L, Barber RL, Harvey EC, Heraud P, Wood BR, Bambery KR, Dillon CT, Munro KL (2010) FTIR spectroscopy of single live cells in aqueous media by synchrotron IR microscopy using microfabricated sample holders. Vib Spectrosc 53:34–38. doi:10.1016/j.vibspec.2010.02.005

    Article  CAS  Google Scholar 

  • Wang Y, Yao X, Parthasarathy R (2010) Characterization of interfacial Chemistry of adhesive/dentin bond using FTIR chemical imaging with univariate and multivariate data processing. J Biomed Mater Res A 91:251–262. doi:10.1002/jbm.a.32249

    Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the Australian Synchrotron for supporting access to the IR Microspectroscopy beamline, at which part of the data presented were collected, the scientific and technical assistance of Prof Frances Separovic for providing us the facility to conduct solid state NMR at Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Mr Phil Francis and Mr Peter Rummel, of the Australian Microscopy and Microanalysis Research Facility at the RMIT Microscopy and Microanalysis Facility, RMIT University, Mr Frank Antolasic and Mr Mike Allan, from the School of Science and School of Engineering, respectively, RMIT University, for their continued support in completing the experimental work through an Australian Post Graduate Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tapasi Mukherjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukherjee, T., Tobin, M.J., Puskar, L. et al. Chemically imaging the interaction of acetylated nanocrystalline cellulose (NCC) with a polylactic acid (PLA) polymer matrix. Cellulose 24, 1717–1729 (2017). https://doi.org/10.1007/s10570-017-1217-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1217-x

Keywords

Navigation