Skip to main content
Log in

Control of properties of nanocomposites bio-based collagen and cellulose nanocrystals

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Collagen is an important biomaterial because it has many applications in the biomedical sector. However, the high hydrophilicity of collagen (COL) leads to easy swelling. Thus, controlling this property is highly desirable. In this work, cellulose nanocrystals (CNCs) dispersed in glycerol (GLI) were incorporated in the matrix collagen to tailor the hydrophilicity and mechanical properties. Study of the hydrophilicity of the bio-based nanocomposite was evaluated by contact angle measurement and thermogravimetric analysis. Mechanical analyses showed that CNCs are excellent reinforcing fillers to the collagen matrix. Synchrotron small-angle X-ray scattering was employed to investigate the nanostructures of COL/GLI/CNC nanocomposites and CNC water dispersion. CNC in concentrations up to 1 wt% presents an intermediate shape between a rod and a plane with a 9.34-nm radius of gyration (R g). Bio-based nanocomposites present two different structural levels with two types of particles with very different R gs. At the intermediate power-law regime, a large-scale mass fractal aggregate is observed. In the high-power-law regime, it is observed scattering from primary particles smaller than 1 nm. As the CNC concentration increases, the original particle distorts from a rod to a plate. The cytotoxicity assay indicates that the collagen and nanocomposites did not affect the cell viability of rat calvarial cells in vitro.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Belbachir K, Noreen R, Gouspillou G, Petibois C (2009) Collagen types analysis and differentiation by FTIR spectroscopy. Anal Bioanal Chem 395:829–837. doi:10.1007/s00216-009-3019-y

    Article  CAS  Google Scholar 

  • Benhamou K, Kaddami H, Magnin A et al (2015) Bio-based polyurethane reinforced with cellulose nanofibers: a comprehensive investigation on the effect of interface. Carbohydr Polym 122:202–211. doi:10.1016/j.carbpol.2014.12.081

    Article  CAS  Google Scholar 

  • Borges JG, Silva AG, Cervi-Bitencourt CM et al (2016) Lecithin, gelatin and hydrolyzed collagen orally disintegrating films: functional properties. Int J Biol Macromol 86:907–916. doi:10.1016/j.ijbiomac.2016.01.089

    Article  CAS  Google Scholar 

  • Caetano BL, Santilli CV, Meneau F, et al (2011) In situ and simultaneous UV–vis/SAXS and UV-vis/XAFS time-resolved monitoring of ZnO quantum dots formation and growth. J Phys Chem 115:4404–4412

    Article  CAS  Google Scholar 

  • de Mesquita JP, Patrício PS, Donnici CL et al (2011) Hybrid layer-by-layer assembly based on animal and vegetable structural materials: multilayered films of collagen and cellulose nanowhiskers. Soft Matter 7:4405. doi:10.1039/c0sm01168a

    Article  Google Scholar 

  • De Mesquita JP, Donnici CL, Teixeira IF, Pereira FV (2012) Bio-based nanocomposites obtained through covalent linkage between chitosan and cellulose nanocrystals. Carbohydr Polym 90:210–217. doi:10.1016/j.carbpol.2012.05.025

    Article  Google Scholar 

  • Farrell HM, Wickham ED, Unruh JJ et al (2001) Secondary structural studies of bovine caseins: temperature dependence of b-casein structure as analyzed by circular dichroism and FTIR spectroscopy and correlation with micellization. Food Hydrocoll 15:341–354. doi:10.1016/S0268-005X(01)00080-7

    Article  CAS  Google Scholar 

  • Fortunati E, Puglia D, Monti M et al (2013) Cellulose nanocrystals extracted from okra fibers in PVA nanocomposites. J Appl Polym Sci 128:3220–3230. doi:10.1002/app.38524

    Article  CAS  Google Scholar 

  • Friess W (1998) Collagen—biomaterial for drug delivery. Eur J Pharm Biopharm 45:113–136. doi:10.1016/S0939-6411(98)00017-4

    Article  CAS  Google Scholar 

  • Hiraoka Y, Kimura Y, Ueda H, Tabata Y (2003) Fabrication and biocompatibility of collagen sponge reinforced with poly(glycolic acid) fiber. Tissue Eng 9:1101–1112. doi:10.1089/10763270360728017

    Article  CAS  Google Scholar 

  • Hirata E, Uo M, Takita H et al (2011) Multiwalled carbon nanotube-coating of 3D collagen scaffolds for bone tissue engineering. Carbon N Y 49:3284–3291. doi:10.1016/j.carbon.2011.04.002

    Article  CAS  Google Scholar 

  • Homenick CM, Sheardown H, Adronov A (2010) Reinforcement of collagen with covalently-functionalized single-walled carbon nanotube crosslinkers. J Mater Chem 20:2887. doi:10.1039/b925799c

    Article  CAS  Google Scholar 

  • Hyeon-lee J, Beaucage G, Pratsinis SE, Vemury S (1998) Fractal analysis of flame-synthesized nanostructured silica and titania powders using small-angle X-ray scattering. Langmuir 14:5751–5756

    Article  Google Scholar 

  • Khan A, Khan RA, Salmieri S et al (2012) Mechanical and barrier properties of nanocrystalline cellulose reinforced chitosan based nanocomposite films. Carbohydr Polym 90:1601–1608. doi:10.1016/j.carbpol.2012.07.037

    Article  CAS  Google Scholar 

  • Klüver E, Meyer M (2013) Preparation, processing, and rheology of thermoplastic collagen. J Appl Polym Sci 128:4201–4211. doi:10.1002/app.38644

    Article  Google Scholar 

  • Ko YC, Ratner BD, Hoffman AS (1981) Characterization of hydrophilic-hydrophobic polymeric surfaces by contact angle measurements. J Colloid Interface Sci 82:25–37. doi:10.1016/0021-9797(81)90120-X

    Article  CAS  Google Scholar 

  • Li W, Guo R, Lan Y et al (2014) Preparation and properties of cellulose nanocrystals reinforced collagen composite films. J Biomed Mater Res A 102:1131–1139. doi:10.1002/jbm.a.34792

    Article  Google Scholar 

  • Li N, Fan X, Tang K et al (2016) Nanocomposite scaffold with enhanced stability by hydrogen bonds between collagen, polyvinyl pyrrolidone and titanium dioxide. Colloids Surf B Biointerfaces 140:287–296. doi:10.1016/j.colsurfb.2015.12.005

    Article  CAS  Google Scholar 

  • Meyer M, Baltzer H, Schwikal K (2010) Collagen fibres by thermoplastic and wet spinning. Mater Sci Eng C 30:1266–1271. doi:10.1016/j.msec.2010.07.005

    Article  CAS  Google Scholar 

  • Moraes PRF de S, Saska S, Barud H et al (2016) Bacterial cellulose/collagen hydrogel for wound healing. Mater Res 19:106–116. doi:10.1590/1980-5373-MR-2015-0249

    Article  Google Scholar 

  • Nagalakshmaiah M, El Kissi N, Dufresne A (2016) Ionic compatibilization of cellulose nanocrystals with quaternary ammonium salt and their melt extrusion with polypropylene. ACS Appl Mater Interfaces 8:8755–8764. doi:10.1021/acsami.6b01650

    Article  CAS  Google Scholar 

  • Olmo N, Lizarbe MA, Gavilanes JG (1987) Biocompatibility and degradability of sepiolite–collagen complex. Biomaterials 8:67–69. doi:10.1016/0142-9612(87)90033-0

    Article  CAS  Google Scholar 

  • Orban JM, Wilson LB, Kofroth JA et al (2004) Crosslinking of collagen gels by transglutaminase. J Biomed Mater Res A 68:756–762. doi:10.1002/jbm.a.20110

    Article  Google Scholar 

  • Pajot-augy E, Axelos MA V, Recherche U De, et al (1992) The effect of organic cryosolvents on actin structure: studies by small angle X-ray scattering 179–184

  • Pastorino L, Erokhina S, Soumetz FC et al (2011) Collagen containing microcapsules: smart containers for disease controlled therapy. J Colloid Interface Sci 357:56–62. doi:10.1016/j.jcis.2011.02.010

    Article  CAS  Google Scholar 

  • Patrício PSDO, Pereira FV, Dos Santos MC et al (2013) Increasing the elongation at break of polyhydroxybutyrate biopolymer: Effect of cellulose nanowhiskers on mechanical and thermal properties. J Appl Polym Sci 127:3613–3621. doi:10.1002/app.37811

    Article  Google Scholar 

  • Pereira IM, Ore RL (2011) Study of the morphology exhibited by linear segmented polyurethanes. doi:10.1002/masy.200900080

  • Pereira IM, Oréfice RL (2010) In situ evaluation of structural changes in poly (ester-urethanes) during shape-memory cycles. 51:1744–1751. doi:10.1016/j.polymer.2010.02.037

  • Plepis AG (1996) Dielectric and pyroelectric characterization of anionic and native collagen. Polym Eng Sci 3:3–9. doi:10.1002/pen.10694

    Google Scholar 

  • Ramachandran R, Beaucage G, Kulkarni AS et al (2008) Persistence length of short-chain branched polyethylene. Macromolecules 41:9802–9806. doi:10.1021/ma801775n

    Article  CAS  Google Scholar 

  • Rämänen P, Penttilä PA, Svedström K et al (2012) The effect of drying method on the properties and nanoscale structure of cellulose whiskers. Cellulose 19:901–912. doi:10.1007/s10570-012-9695-3

    Article  Google Scholar 

  • Rivadeneira J, Di Virgilio AL, Audisio MC et al (2014) Evaluation of antibacterial and cytotoxic effects of nano-sized bioactive glass/collagen composites releasing tetracycline hydrochloride. J Appl Microbiol 116:1438–1446. doi:10.1111/jam.12476

    Article  CAS  Google Scholar 

  • Singh M, Sinha I, Singh AK, Mandal RK (2011) Formation of fractal aggregates during green synthesis of silver nanoparticles. J Nanoparticle Res 13:69–76. doi:10.1007/s11051-010-0001-8

    Article  CAS  Google Scholar 

  • Stachel I, Schwarzenbolz U, Henle T, Meyer M (2010) Cross-linking of type I collagen with microbial transglutaminase: identification of cross-linking sites. Biomacromolecules 11:698–705. doi:10.1021/bm901284x

    Article  CAS  Google Scholar 

  • Su D, Wang C, Cai S et al (2012) Influence of palygorskite on the structure and thermal stability of collagen. Appl Clay Sci 62–63:41–46. doi:10.1016/j.clay.2012.04.017

    Article  Google Scholar 

  • Ten E, Turtle J, Bahr D et al (2010) Thermal and mechanical properties of poly (3-hydroxybutyrate- co -3- hydroxyvalerate)/cellulose nanowhiskers composites. Polymer (Guildf) 51:2652–2660. doi:10.1016/j.polymer.2010.04.007

    Article  CAS  Google Scholar 

  • Vieira MGA, Da Silva MA, Dos Santos LO, Beppu MM (2011) Natural-based plasticizers and biopolymer films: a review. Eur Polym J 47:254–263. doi:10.1016/j.eurpolymj.2010.12.011

    Article  CAS  Google Scholar 

  • Wei W, Wei S, Zhang S (2014) Preparation and characterization of hydroxyapatite- poly(vinyl alcohol) composites reinforced with cellulose nanocrystals. Bioresources 9:6087–6099

    Google Scholar 

  • Yang J, Han CR, Zhang XM et al (2014) Cellulose nanocrystals mechanical reinforcement in composite hydrogels with multiple cross-links: correlations between dissipation properties and deformation mechanisms. Macromolecules 47:4077–4086. doi:10.1021/ma500729q

    Article  CAS  Google Scholar 

  • Yousefi M, Ariffin F, Huda N (2017) An alternative source of type I collagen based on by-product with higher thermal stability. Food Hydrocoll 63:1–38. doi:10.1016/j.foodhyd.2016.09.029

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the National Synchrotron Light Laboratory (LNLS-Brazil) for the use of the SAXS beam line facilities, CNPq and FAPEMIG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrícia S. de O. Patricio.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1244 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, A.P.H., Pereira, I.M., de Souza, S.D. et al. Control of properties of nanocomposites bio-based collagen and cellulose nanocrystals. Cellulose 24, 1731–1744 (2017). https://doi.org/10.1007/s10570-017-1218-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-017-1218-9

Keywords

Navigation