Skip to main content
Log in

Increased solubility of plant core pulp cellulose for regenerated hydrogels through electron beam irradiation

  • Original Paper
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

High cellulose solubility is an essential to successful production of regenerated cellulose, from which hydrogels can be produced. Additionally, some pretreatment usually facilitates cellulose solubility. Bleached cellulose pulp from kenaf core (BK), consisting of lignin (0.3%), hemicellulose (5.2%) and ash (0%), was treated with an electron beam irradiation (EBI) at 10, 30, 50 and 70 kGy. The BK and irradiated bleached cellulose pulp (IK) were then dissolved in either sodium hydroxide/urea or lithium hydroxide/urea solvents which subsequently crosslinked with epichlorohydrin (ECH) solution to stabilize the formation of regenerated cellulose hydrogels. The amount of α-cellulose component in IK samples decreased as much as 38% and caused the viscosity average molecular weight (Mv) and degree of polymerization of IK samples to be reduced significantly by 84 and 87%, respectively. This resulted in an increase in cellulose solubility (up to 30%) for the IK samples in both solvent systems. However, this treatment resulted in a reduction in the overall cellulose fibre strength. X-ray diffraction of the hydrogels showed a transformation from cellulose I to amorphous cellulose. These hydrogels exhibited a higher degree of swelling, transparency and porosity compared to hydrogels prepared from non-irradiated pulp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aji IS, Sapuan SM, Zainudin ES, Abdan K (2009) Kenaf fibers as reinforcement for polymeric composites: a review. Int J Mech Mater Eng (IJMME) 4(3):239–248

    Google Scholar 

  • Alberti A, Bertini S, Gastaldi G, Iannaccone N, Macciantelli D, Torri G, Vismara E (2005) Electron beam irradiated textile cellulose fibres.: ESR studies and derivatisation with glycidyl methacrylate (GMA). Eur Polym J 41:1787–1797

    Article  CAS  Google Scholar 

  • Alves L, Medronho BF, Antunes FE, Romano A, Miguel MG, Lindman B (2015) On the role of hydrophobic interactions in cellulose dissolution and regeneration: colloidal aggregates and molecular solutions. Colloids Surf A: Physicochem Eng Aspects 483:257–263

    Article  CAS  Google Scholar 

  • Annabi N, Nichol JW, Zhong X, Ji C, Koshy S, Khademhosseini A, Dehghani F (2010) Controlling the porosity and microarchitecture of hydrogels for tissue engineering. Tissue Eng Part B: Rev 16:371–383

    Article  CAS  Google Scholar 

  • Cai J, Zhang L (2006) Unique gelation behavior of cellulose in NaOH/urea aqueous solution. Biomacromolecules 7:183–189

    Article  CAS  PubMed  Google Scholar 

  • Cai J, Wang L, Zhang L (2007a) Influence of coagulation temperature on pore size and properties of cellulose membranes prepared from NaOH–urea aqueous solution. Cellulose 14:205–215

    Article  CAS  Google Scholar 

  • Cai J et al (2007b) Multifilament fibers based on dissolution of cellulose in NaOH/urea aqueous solution: structure and properties. Adv Mater 19:821–825

    Article  CAS  Google Scholar 

  • Cai J et al (2008) Dynamic self-assembly induced rapid dissolution of cellulose at low temperatures. Macromolecules 41:9345–9351

    Article  CAS  Google Scholar 

  • Chang C, Lue A, Zhang L (2008) Effects of crosslinking methods on structure and properties of cellulose/PVA hydrogels. Macromol Chem and Phys 209:1266–1273

    Article  CAS  Google Scholar 

  • Chang C, Duan B, Zhang L (2009) Fabrication and characterization of novel macroporous cellulose-alginate hydrogels. Polymer 50:5467–5473

    Article  CAS  Google Scholar 

  • Chang C, Duan B, Cai J, Zhang L (2010a) Superabsorbent hydrogels based on cellulose for smart swelling and controllable delivery. Eur Polym J 46:92–100

    Article  CAS  Google Scholar 

  • Chang C, Zhang L, Zhou J, Zhang L, Kennedy JF (2010b) Structure and properties of hydrogels prepared from cellulose in NaOH/urea aqueous solutions. Carbohydr Polym 82:122–127

    Article  CAS  Google Scholar 

  • Charlesby A (1955) The degradation of cellulose by ionizing radiation. J Polym Sci 15:263–270

    Article  CAS  Google Scholar 

  • Chen QY, Ma XJ, Li JG, Miao QX, Huang L-L (2017) Effect of the utilization of electron beam irradiation on the reactivity of bamboo dissolving pulp. BioResour 12(3):6251–6261

    CAS  Google Scholar 

  • Cheng S, Kerluke DR (2003) Radiation processing for modification of polymers. In: ANTEC 2003 conference proceedings, pp. 2694–2699

  • Choi HY, Han SO, Lee JS (2008) Surface morphological, mechanical and thermal characterization of electron beam irradiated fibers. Appl Surf Sci 255:2466–2473

    Article  CAS  Google Scholar 

  • Ciolacu D, Ciolaci F, Popa V (2011) Amorphous cellulose-structure and characterization. Cellul Chem Technol 45(1–2):13–21

    CAS  Google Scholar 

  • Ding ZD, Chi Z, Gu WX, Gu SM, Liu JH, Wang HJ (2012) Theoretical and experimental dissolution and regeneration of cellulose in ionic liquid. Carbohydr Polym 89:7–16

    Article  CAS  PubMed  Google Scholar 

  • Driscoll M, Stipanovic A, Winter W, Cheng K, Manning M, Spiese J, Galloway RA, Cleland MR (2009) Electron beam irradiation of cellulose. Radiat Phys Chem 78:539–542

    Article  CAS  Google Scholar 

  • Dubey KA, Pujari PK, Ramnani SP, Kadam RM, Sabharwal S (2004) Microstructiural studies of electron beam-irradiated cellulose pulp. Radiat Phys Chem 69:395–400

    Article  CAS  Google Scholar 

  • Fei B, Wach RA, Mitomo H, Yoshii F, Kume T (2000) Hydrogel of biodegradable cellulose derivatives. I. Radiation-induced crosslinking of CMC. J Appl Polym Sci 78:278–283

    Article  CAS  Google Scholar 

  • Gan S, Zakaria S, Chia CH, Kaco H, Padzil FNM (2014) Synthesis of kenaf cellulose carbamate using microwave irradiation for preparation of cellulose membrane. Carbohydr Polym 106:160–165

    Article  CAS  PubMed  Google Scholar 

  • Gan S, Padzil FNM, Zakaria S, Chia CH, Jaafar SNS, Chen RS (2015a) Surface analysis of cotton cellulose membrane via liquid hot water pretreatment. BioResources 10:2244–2255

    Article  CAS  Google Scholar 

  • Gan S, Padzil FNM, Zakaria S, Chia CH, Jaafar SNS, Chen RS (2015b) Synthesis of liquid hot water cotton linter to prepare cellulose membrane using NaOH/urea or LiOH/urea. BioResources 10:2244–2255

    Article  CAS  Google Scholar 

  • Gan S, Zakaria S, Ng P, Chia CH, Chen RS (2016) Effect of acid hydrolysis and thermal hydrolysis on solubility and properties of oil palm empty fruit bunch fiber cellulose hydrogel. BioResources 11(1):126–139

    Article  CAS  Google Scholar 

  • Gan S, Zakaria S, Che RS, Chia CH, Padzil FNM, Moosavi S (2017) Autohydrolysis processing as an alternative to enhance cellulose solubility and preparation of its regenerated bio-based materials. Mater Chem and Phys 192:181–189

    Article  CAS  Google Scholar 

  • Ganji F, Vasheghani-Farahani S, Vasheghani-Farahani E (2010) Theoretical description of hydrogel swelling: a review. Iran Polym J 19:75–398

    Google Scholar 

  • Geresh S, Adin I, Yarmolincky E, Karpasas M (2002) Characterization of the extracellular polysaccharide of Porphyridium sp.: molecular weight determination and rheological properties. Carbohydr Polym 50:183–189

    Article  CAS  Google Scholar 

  • Gulrez SKH, Al-Assaf S, Phillips GO (2011) Hydrogels: methods of preparation, characterisation and applications. In: Prof. Angelo Carpi (Ed.), Progress in molecular and environmental bioengineering—from analysis and modeling to technology applications, Chapter 5. Intech, pp 117–151

  • Hallac BB, Ragauskas AJ (2011) Analyzing cellulose degree of polymerization and its relevancy to cellulosic ethanol Biofuels. Bioprod Bioref 5:215–225

    Article  CAS  Google Scholar 

  • Han YH, Han SO, Cho D, Kim H-I (2007) Kenaf/polypropylene biocomposites: effects of electron beam irradiation and alkali treatment on kenaf natural fibers. Compos Interface 14:559–578

    Article  CAS  Google Scholar 

  • Henniges U, Hasani M, Potthast A, Westman G, Rosenau T (2013) Electron beam irradiation of cellulosic materials—opportunities and limitations. Materials 6:1584–1598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horio M, Imamura R, Mizukami H (1962) Effect of gamma irradiation upon cellulose. Bull Inst Chem Res Kyoto Univ 41(1):17–38

    Google Scholar 

  • Iller E, Kukielka A, Stupinska H, Mikolajczyk W (2002) Electron-beam stimulation of the reactivity of cellulose pulps for production of derivatives. Radiat Phys Chem 63(3):253–257

    Article  CAS  Google Scholar 

  • Imamura R, Ueno T, Murakami K (1972) Depolymerization of cellulose by electron beam irradiation. Bull Inst Chem Res Kyoto Univ 50(1):51–63

    CAS  Google Scholar 

  • Jonoobi M, Harun J, Shakeri A, Misra M, Iksman K (2009) Chemical composition, crystallinity, and thermal degradation of bleached and unbleached kenaf bast (Hibiscus cannabinus) pulp and nanofibers. BioResources 4(2):626–639

    CAS  Google Scholar 

  • Korean Standard 7044 Method (1995) Testing method for alpha, beta, gamma cellulose in pulp. Korean Agency for Technol and Stand, ICS code 85:040

    Google Scholar 

  • Lee JS (2013) The effect of electron beam irradiation on chemical and morphological properties of Hansan ramie fibers. Fash Text Res J 15(3):430–436

    Article  Google Scholar 

  • Lin B, He B, Liu Y, Ma L (2014) Correlation analysis for fiber characteristics and strength properties of softwood kraft pulps from different stages of a bleaching fiber line. BioResources 9:5024–5033

    CAS  Google Scholar 

  • Luo X, Zhang L (2013) New solvents and functional materials prepared from cellulose solutions in alkali/urea aqueous system. Food Res Intern 52:387–400

    Article  CAS  Google Scholar 

  • Mao L, Hu Y, Piao Y, Chen X, Xian W, Piao D (2005) Structure and character of artificial muscle model constructed from fibrous hydrogel. Curr Appl Phys 5:426–428

    Article  Google Scholar 

  • Padzil FNM, Zakaria S, Chia CH, Jaafar SNS, Kaco H, Gan S, Ng P (2015) Effect of acid hydrolysis on regenerated kenaf core membrane produced using aqueous alkaline–urea systems. Carbohydr Polym 124:164–171

    Article  CAS  PubMed  Google Scholar 

  • Ruiz HA, Rodríguez-Jasso RM, Fernandes BD, Vicente AA, Teixeira JA (2013) Hydrothermal processing, as an alternative for upgrading agriculture residues and marine biomass according to the biorefinery concept: a review. Renew Sustain Energy Rev 21:35–51

    Article  CAS  Google Scholar 

  • Sajab MS, Chia CH, Zakaria S, Jani SM, Ayob MK, Chee KL, Khiew PS, Chiu WS (2011) Citric acid modified kenaf core fibres for removal of methylene blue from aqueous solution. Bioresour Technol 102:7237–7243

    Article  CAS  PubMed  Google Scholar 

  • Sannino A, Demitri C, Madaghiele M (2009) Biodegradable cellulose-based hydrogels: design and applications Mater 2:353–373

    CAS  Google Scholar 

  • Shakhes J, Zeinaly F, Marandi MAB, Saghafi T (2011) The effects of processing variables on the soda and soda-AQ pulping of kenaf bast fiber. BioResour 6(4):4626–4639

    CAS  Google Scholar 

  • Shin SJ, Sung YJ (2008) Omrpoving enzymatic hydrolysis of industrial hemp (Cannabis sativa L.) by electron beam irradiation. Radiat Phys Chem 77:1034–1038

    Article  CAS  Google Scholar 

  • Stupinska H, Iller E, Zimek Z, Wawro D, Ciechanska D, Kopania E, Palenil J, Milczarek S, Steplewski W, Krzyzanowska G (2007) An environment-friendly method to prepare microcrystalline cellulose. Fibers Text East Eur 15(5–6):64–65

    Google Scholar 

  • TAPPI Standard (1996) T 231 cm-96 zero-span breaking strength of pulp (dry zero-span tensile)

  • TAPPI Standard (1999) T 203 cm-99 alpha-, beta-, gamma-cellulose in pulp

  • TAPPI Standard (2002) T 211 om-02 ash in wood, pulp, paper and paperboard: combustio at 525 °C

  • TAPPI Standard (2006) T 205 sp-02 forming handsheets for physical tests of pulp

  • TAPPI Standard (2006) T 222 om-02 acid-insoluble lignin in wood and pulp

  • Varanasi S, Chiam HH, Batchelor W (2012) Application and interpretation of zero and short-span testing on nanofibre sheet materials. Nordic Pulp Paper Res J 27:343

    Article  CAS  Google Scholar 

  • Wach RA, Mitomi H, Yoshii F, Kume T (2002) Hydrogel of radiation-induced cross-linked hydroxypropylcellulose. Macromol Mater Eng 287:285–295

    Article  CAS  Google Scholar 

  • Wach RA, Mitomo H, Nagasawa N, Yoshii F (2003) Radiation crosslinking of carboxymethylcellulose of various degree of substitution at high concentration in aqueous solutions of natural pH. Radiat Phys Chem 68:771–779

    Article  CAS  Google Scholar 

  • Wach RA, Mitomi H, Yoshii F (2004) ESR investigation on gamma-irradiated methylcelluloe and hydroxyethylcellulose in dry state and in aqueous solution. J Radioanal Nucl Chem 261(1):113–118

    Article  CAS  Google Scholar 

  • Wise LE, Murphy M, D’Addieco AA (1945) Chlorite holocellulose, its fractionation and bearing on summative wood analysis and on studies on the hemicellulose. Pap Trade J 122(2):35–43

    Google Scholar 

  • Wong S-S, Kasapis S, Tan YM (2009) Bacterial and plant cellulose modification using ultrasound irradiation. Carbohydr Polym 77(2):280–287

    Article  CAS  Google Scholar 

  • Xiong B, Zhao P, Hu K, Zhang L, Cheng G (2014) Dissolution of cellulose in aqueous NaOH/urea solution: role of urea. Cellulose 21(3):1183–1192

    Article  CAS  Google Scholar 

  • Zhou X, Gurnagul N, Uesaka T, Bouchard J (1994) Accelerated aging of papers of pure cellulose: mechanism of cellulose degradation and paper embrittlement. Polym Degrad Stab 43:393–402

    Article  Google Scholar 

  • Zhou J, Chang C, Zhang R, Zhang L (2018) Hydrogels prepared from unsubstituted cellulose in NaOH/urea aqueous solution. Macromol Biosci 7:804–809

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank to research project’s MRUN-2015-003, DIP 2016-004, the Ministry of Higher Education Malaysia for MyBrain15-MyPhD Scholarship for financial support and a Flinders International Research Fellowship for undertaking research at Flinders University of South Australia. Appreciation is given to the Centre for Research and Instrumentation Management (CRIM) at Universiti Kebangsaan Malaysia (UKM) and the Research Centre at Chungnam National University (CNU) of Korea, the Korea Atomic Energy Research Institute (KAERI), Flinders University of South Australia, the Malaysia Agriculture Research Development Institute (MARDI) and the Forest Research Institute of Malaysia (FRIM) for providing research materials and testing facilities. In addition, thanks are given to the CNU bio-based materials laboratory members.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sinyee Gan or Sarani Zakaria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammad Padzil, F.N., Gan, S., Zakaria, S. et al. Increased solubility of plant core pulp cellulose for regenerated hydrogels through electron beam irradiation. Cellulose 25, 4993–5006 (2018). https://doi.org/10.1007/s10570-018-1933-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-018-1933-x

Keywords

Navigation