Skip to main content
Log in

Electroless plating of platinum nanoparticles onto mesoporous cellulose films for catalytically active free-standing materials

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Here we report a simple and cost-effective approach for the electroless plating of platinum onto mesoporous cellulosic structures to obtain catalytically active free-standing hybrid materials. Pt nanoparticles are reduced onto native cellulosic supports through wet chemical reduction of cis-[PtCl2(sty)2] (sty = styrene). The decoration of solid cellulosic films by Pt nanoparticles was followed by Fourier transform infrared spectroscopy, reflectance mode ultraviolet–visible spectroscopy, thermogravimetric analysis, X-ray powder diffraction and scanning electron microscopy. An induction period is observed for the reduction of cis-[PtCl2(sty)2] to spherical Pt nanoparticles onto cellulosic supports, after which the amount of deposited Pt increases rapidly. Upon coating a commercially available cellulose fabric with Pt, the Brunauer–Emmett–Teller surface area increases by a factor of 4. Catalytic properties of obtained materials are examined for two model reactions; the reduction of 4-nitrophenol to 4-aminophenol and the hydrosilylation of styrene with triethylsilane. Catalysis was particularly efficient using previously synthesized mesoporous cellulose nanocrystal films as supports due to their high specific surface area up to 177 m2 g−1. Free-standing Pt-decorated mesoporous cellulose films could be potentially used in catalytic applications for the production of industrially relevant compounds and wastewater treatment.

Graphical abstract

An approach for the electroless plating of platinum onto mesoporous cellulosic structures to obtain catalytically active free-standing hybrid materials is here reported. Obtained materials show a potential application for novel production procedures applied to industrially relevant compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albinati A, Caseri WR, Pregosin PS (1987) Hydrosilylation with platinum complexes. Preparation, low-temperature NMR spectra, and X-ray crystal structure of the novel bis-olefin catalyst cis-PtCl2(PhCH=CH2)2. Organometallics 6:788–793

    Article  CAS  Google Scholar 

  • Argudo Garcia JJ, Molina Moreno VLDJ (2017) Valorization of sludge from drinking water treatment plants. A commitment to circular economy and sustainability. Dyna 92:71–75

    Article  Google Scholar 

  • Chen X, Shen S, Guo L, Mao SS (2010) Semiconductor-based photocatalytic hydrogen generation. Chem Rev 110:6503–6570

    Article  CAS  PubMed  Google Scholar 

  • Chen M, Kang H, Gong Y et al (2015) Bacterial cellulose supported gold nanoparticles with excellent catalytic properties. ACS Appl Mater Interfaces 7:21717–21726

    Article  CAS  PubMed  Google Scholar 

  • Cruz-Tato P, Ortiz-Quiles EO, Vega-Figueroa K et al (2017) Metalized nanocellulose composites as a feasible material for membrane supports: design and applications for water treatment. Environ Sci Technol 51:4585–4595

    Article  CAS  PubMed  Google Scholar 

  • Dankovich TA, Gray DG (2011) Bactericidal paper impregnated with silver nanoparticles for point-of-use water treatment. Environ Sci Technol 45:1992–1998

    Article  CAS  PubMed  Google Scholar 

  • Eisa WH, Abdelgawad AM, Rojas OJ (2018) Solid-state synthesis of metal nanoparticles supported on cellulose nanocrystals and their catalytic activity. ACS Sustain Chem Eng 6:3963–3974

    Article  CAS  Google Scholar 

  • Emam HE, Ahmed HB (2018) Carboxymethyl cellulose macromolecules as generator of anisotropic nanogold for catalytic performance. Int J Biol Macromol 111:999–1009

    Article  CAS  PubMed  Google Scholar 

  • Emam HE, El-Bisi MK (2014) Merely Ag nanoparticles using different cellulose fibers as removable reductant. Cellulose 21:4219–4230

    Article  CAS  Google Scholar 

  • Emam HE, El-Zawahry MM, Ahmed HB (2017a) One-pot fabrication of AgNPs, AuNPs and Ag-Au nano-alloy using cellulosic solid support for catalytic reduction application. Carbohydr Polym 166:1–13

    Article  CAS  PubMed  Google Scholar 

  • Emam HE, Zahran MK, Ahmed HB (2017b) Generation of biocompatible nanogold using H2O2–starch and their catalytic/antimicrobial activities. Eur Polym J 90:354–367

    Article  CAS  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Fürstner A (2009) Gold and platinum catalysis—a convenient tool for generating molecular complexity. Chem Soc Rev 38:3208–3221

    Article  CAS  PubMed  Google Scholar 

  • Gianini M, Caseri WR, Suter UW (2001) Polymer nanocomposites containing superstructures of self-organized platinum colloids. J Phys Chem B 105:7399–7404

    Article  CAS  Google Scholar 

  • Goikuria U, Larrañaga A, Vilas JL, Lizundia E (2017) Thermal stability increase in metallic nanoparticles-loaded cellulose nanocrystal nanocomposites. Carbohydr Polym 171:193–201

    Article  CAS  PubMed  Google Scholar 

  • Grzelczak M, Vermant J, Furst EM, Liz-Marzán LM (2010) Directed self-assembly of nanoparticles. ACS Nano 4:3591–3605

    Article  CAS  PubMed  Google Scholar 

  • Isayev O, Rasulev B, Gorb L, Leszczynski J (2006) Structure-toxicity relationships of nitroaromatic compounds. Mol Divers 10:233–245

    Article  CAS  PubMed  Google Scholar 

  • Kaushik M, Moores A (2016) Review: nanocelluloses as versatile supports for metal nanoparticles and their applications in catalysis. Green Chem 18:622–637

    Article  CAS  Google Scholar 

  • Kelly JA, Yu M, Hamad WY, Maclachlan MJ (2013) Large, crack-free freestanding films with chiral nematic structures. Adv Opt Mater 1:295–299

    Article  Google Scholar 

  • Kelly JA, Giese M, Shopsowitz KE et al (2014) The development of chiral nematic mesoporous materials. Acc Chem Res 47:1088–1096

    Article  CAS  PubMed  Google Scholar 

  • Khalily MA, Eren H, Akbayrak S et al (2016) Facile synthesis of three-dimensional Pt-TiO2 nano-networks: a highly active catalyst for the hydrolytic dehydrogenation of ammonia–borane. Angew Chemie 55:12257–12261

    Article  CAS  Google Scholar 

  • Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107:1692–1744

    Article  CAS  PubMed  Google Scholar 

  • Lemine OM (2009) Microstructural characterisation of α-Fe2O3 nanoparticles using, XRD line profiles analysis, FE-SEM and FT-IR. Supperlattices Microstruct 45:576–582

    Article  CAS  Google Scholar 

  • Li Z, Yao C, Yu Y et al (2014) Highly efficient capillary photoelectrochemical water splitting using cellulose nanofiber-templated TiO2 photoanodes. Adv Mater 26:2262–2267

    Article  CAS  PubMed  Google Scholar 

  • Li X, Liu B, Ye W et al (2015) Effect of rectorite on the synthesis of Ag NP and its catalytic activity. Mater Chem Phys 151:301–307

    Article  CAS  Google Scholar 

  • Li Z, Yao C, Wang YC et al (2016) High-density platinum nanoparticle-decorated titanium dioxide nanofiber networks for efficient capillary photocatalytic hydrogen generation. J Mater Chem A 4:11672–11679

    Article  CAS  Google Scholar 

  • Ling Y, Li X, Zhou S et al (2015) Multifunctional cellulosic paper based on quaternized chitosan and gold nanoparticle–reduced graphene oxide via electrostatic self-assembly. J Mater Chem A 3:7422–7428

    Article  CAS  Google Scholar 

  • Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921

    Article  CAS  PubMed  Google Scholar 

  • Lizundia E, Vilas JL, León LM (2015) Crystallization, structural relaxation and thermal degradation in Poly(l-lactide)/cellulose nanocrystal renewable nanocomposites. Carbohydr Polym 123:256–265

    Article  CAS  PubMed  Google Scholar 

  • Lizundia E, Nguyen TD, Vilas JL et al (2017) Chiroptical, morphological and conducting properties of chiral nematic mesoporous cellulose/polypyrrole composite films. J Mater Chem A 5:19184–19194

    Article  CAS  Google Scholar 

  • Lizundia E, Goikuria U, Vilas JL et al (2018) Metal nanoparticles embedded in cellulose nanocrystal based films: material properties and post-use analysis. Biomacromol 19:2618–2628

    Article  CAS  Google Scholar 

  • Lucchini M, Lizundia E, Moser S et al (2018) Titania-cellulose hybrid monolith for in-flow purification of water under solar illumination. ACS Appl Mater Interfaces 10:29599–29607

    Article  CAS  PubMed  Google Scholar 

  • Markovic S, Mitric M, Starcevic G, Uskokovic D (2008) Ultrasonic de-agglomeration of barium titanate powder. Ultrason Sonochem 15:16–20

    Article  CAS  PubMed  Google Scholar 

  • Meister TK, Riener K, Gigler P et al (2016) Platinum catalysis revisited-unraveling principles of catalytic olefin hydrosilylation. ACS Catal 6:1274–1284

    Article  CAS  Google Scholar 

  • Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40:3941

    Article  CAS  PubMed  Google Scholar 

  • Neelgund GM, Oki A (2017) Graphene-coupled ZnO: a robust NIR-induced catalyst for rapid photo-oxidation of cyanide. ACS Omega 2:9095–9102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ngo H, Lai N, Isabelle LR (2016) High second-order nonlinear response of platinum nanoflowers: the role of surface corrugation. Nanoscale 8:3489–3495

    Article  CAS  PubMed  Google Scholar 

  • Pan K, Wang W-X (2012) Trace metal contamination in estuarine and coastal environments in China. Sci Total Environ 421–422:3–16

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Mishra SB (2014) Catalytic reduction of p-nitrophenol by using platinum nanoparticles stabilised by guar gum. Carbohydr Polym 113:525–531

    Article  CAS  PubMed  Google Scholar 

  • Pernstich KP, Schenker M, Weibel F et al (2010) Electroless plating of ultrathin films and mirrors of platinum nanoparticles onto polymers, metals, and ceramics. ACS Appl Mater Interfaces 2:639–643

    Article  CAS  PubMed  Google Scholar 

  • Popczun EJ, McKone JR, Read CG et al (2013) Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J Am Chem Soc 135:9267–9270

    Article  CAS  PubMed  Google Scholar 

  • Putzien S, Nuyken O, Kühn FE (2010) Functionalized polysilalkylene siloxanes (polycarbosiloxanes) by hydrosilylation-Catalysis and synthesis. Prog Polym Sci 35:687–713

    Article  CAS  Google Scholar 

  • Qi X, Li X, Chen B et al (2016) Highly active nanoreactors: patchlike or thick Ni coating on Pt nanoparticles based on confined catalysis. ACS Appl Mater Interfaces 8:1922–1928

    Article  CAS  PubMed  Google Scholar 

  • Scherrer P (1918) Bestimmung der Grösse und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Math Klasse 1918:98–100

    Google Scholar 

  • Schlesinger M, Hamad WY, MacLachlan MJ (2015) Optically tunable chiral nematic mesoporous cellulose films. Soft Matter 15:4686–4694

    Article  Google Scholar 

  • Shopsowitz KE, Qi H, Hamad WY, MacLachlan MJ (2010) Free-standing mesoporous silica films with tunable chiral nematic structures. Nature 468:422–425

    Article  CAS  PubMed  Google Scholar 

  • Sommer LH, Pietrusza EW, Whitmore FC (1947) Peroxide-catalyzed addition of trichlorosilane to 1-octene. J Am Chem Soc 69:188

    Article  CAS  Google Scholar 

  • Sonwane CG, Bhatia SK (2000) Characterization of pore size distributions of mesoporous materials from adsorption isotherms. J Phys Chem B 104:9099–9110

    Article  CAS  Google Scholar 

  • Speier JL (1979) Homogeneous catalysis of hydrosilation by transition metals. Adv Organomet Chem 17:407–447

    Article  CAS  Google Scholar 

  • Sprengers JW, De Greef M, Duin MA, Elsevier CJ (2003) Stable Platinum(0) catalysts for catalytic hydrosilylation of styrene and synthesis of [Pt(Ar-bian)(η2-alkene)] complexes. Eur J Inorg Chem 2003:3811–3819

    Article  CAS  Google Scholar 

  • Steffen W, Richardson K, Rockstrom J et al (2015) Planetary boundaries: guiding human development on a changing planet. Science 347:1259855

    Article  CAS  PubMed  Google Scholar 

  • Subero J, Ning Z, Ghadiri M, Thornton C (1999) Effect of interface energy on the impact strength of agglomerates. Powder Technol 105:66–73

    Article  CAS  Google Scholar 

  • Tian N, Zhou ZY, Sun SG et al (2007) Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 316:732–735

    Article  CAS  PubMed  Google Scholar 

  • Troegel D, Stohrer J (2011) Recent advances and actual challenges in late transition metal catalyzed hydrosilylation of olefins from an industrial point of view. Coord Chem Rev 255:1440–1459

    Article  CAS  Google Scholar 

  • Wei H, Rodriguez K, Renneckar S, Vikesland PJ (2014) Environmental science and engineering applications of nanocellulose-based nanocomposites. Environ Sci Nano 1:302–316

    Article  CAS  Google Scholar 

  • Wu L, Ritchie SMC (2006) Removal of trichloroethylene from water by cellulose acetate supported bimetallic Ni/Fe nanoparticles. Chemosphere 63:285–292

    Article  CAS  PubMed  Google Scholar 

  • Wu X, Shi Z, Fu S et al (2016) Strategy for synthesizing porous cellulose nanocrystal supported metal nanocatalysts. ACS Sustain Chem Eng 4:5929–5935

    Article  CAS  Google Scholar 

  • Xi J, Xiao J, Xiao F et al (2016) Mussel-inspired functionalization of cotton for nano-catalyst support and its application in a fixed-bed system with high performance. Sci Rep 6:21904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia BY, Bin WuH, Yan Y et al (2013) Ultrathin and ultralong single-crystal platinum nanowire assemblies with highly stable electrocatalytic activity. J Am Chem Soc 135:9480–9485

    Article  CAS  PubMed  Google Scholar 

  • Xie X, Li Y, Liu Z-Q et al (2009) Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 458:746–749

    Article  CAS  PubMed  Google Scholar 

  • Yang J, Sun D, Li J et al (2009) In situ deposition of platinum nanoparticles on bacterial cellulose membranes and evaluation of PEM fuel cell performance. Electrochim Acta 54:6300–6305

    Article  CAS  Google Scholar 

  • Yang J, Yuan M, Xu D et al (2018) Highly dispersed ultrafine palladium nanoparticles encapsulated in a triazinyl functionalized porous organic polymer as a highly efficient catalyst for transfer hydrogenation of aldehydes. J Mater Chem A 6:18242–18251

    Article  CAS  Google Scholar 

  • You J, Zhao C, Cao J et al (2014) Fabrication of high-density silver nanoparticles on the surface of alginate microspheres for application in catalytic reaction. J Mater Chem A 2:8491–8499

    Article  CAS  Google Scholar 

  • Yuan M, Cui Z, Yang J et al (2017) Ultrafine platinum nanoparticles modified on cotton derived carbon fibers as a highly efficient catalyst for hydrogen evolution from ammonia borane. Int J Hydrogen Energy 42:29244–29253

    Article  CAS  Google Scholar 

  • Zhao H, Yu G, Yuan M et al (2018) Ultrafine and highly dispersed platinum nanoparticles confined in a triazinyl-containing porous organic polymer for catalytic applications. Nanoscale 10:21466–21474

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Andreas Braendle for experimental support in the hydrosilylation experiments and Elena Tervoort for the assistance provided during SEM analyses. The authors gratefully acknowledge ETH Zürich for financial support. Erlantz Lizundia thanks The Spanish Ministry of Education, Culture and Sport for the “José Castillejo” mobility grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erlantz Lizundia.

Ethics declarations

Data availability

All the data used to support the findings of this study are included within the article.

Conflicts of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 6859 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lizundia, E., Jimenez, M., Altorfer, C. et al. Electroless plating of platinum nanoparticles onto mesoporous cellulose films for catalytically active free-standing materials. Cellulose 26, 5513–5527 (2019). https://doi.org/10.1007/s10570-019-02463-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02463-4

Keywords

Navigation