Skip to main content
Log in

Creatine and Antioxidant Treatment Prevent the Inhibition of Creatine Kinase Activity and the Morphological Alterations of C6 Glioma Cells Induced by the Branched-Chain α-Keto Acids Accumulating in Maple Syrup Urine Disease

  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Summary

Accumulation of the branched-chain α-keto acids (BCKA), α-ketoisocaproic acid (KIC), α-keto-β-methylvaleric acid (KMV), and α-ketoisovaleric acid (KIV) and their respective branched-chain α-amino acids (BCAA) in tissues and biological fluids is the biochemical hallmark of patients affected by the neurometabolic disorder known as maple syrup urine disease (MSUD). Considering that brain energy metabolism is possibly altered in MSUD, the objective of this study was to determine creatine kinase (CK) activity, a key enzyme of energy homeostasis, in C6 glioma cells exposed to BCKA. The cells were incubated with 1, 5, or 10 mM BCKA for 3 h and the CK activity measured afterwards. The results indicated that the BCKA significantly inhibited CK activity at all tested concentrations. Furthermore, the inhibition caused by the BCKA on CK activity was totally prevented by preincubation with the energetic substrate creatine and by coincubation with the N-nitro-L-arginine methyl ester (L-NAME), a nitric oxide synthase inhibitor, indicating that deficit of energy and nitric oxide (NO) are involved in these effects. In contrast, other antioxidants such as glutathione (GSH) and trolox (soluble Vitamin E) were not able to prevent CK inhibition. In addition, we observed that the C6 cells changed their usual rounded morphology when exposed for 3 h to 10 mM BCKA and that creatine and L-NAME prevented these morphological alterations. Considering the importance of CK for brain metabolism homeostasis, it is conceivable that inhibition of this enzyme by increased levels of BCKA may contribute to the neurodegeneration of MSUD patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akesenov, M., Akesenova, M., Payne, R. M., Smith, C. D., Markesbery, W. R., and Carney, J. M. (1996). The expression of creatine kinase isoenzymes in neocortex of patients with neurodegenetarive disorders: Alzheimer's and Pick's disease. Exp. Neurol. 146:458–465.

    Article  Google Scholar 

  • Appel, S. H. (1966). Inhibition of brain protein synthesis: An approach to a biochemical basis of neurological dysfunction in the amino-acidurias. Trans. N. Y. Acad. Sci. 29:63–70.

    CAS  PubMed  Google Scholar 

  • Araújo, P., Wassermann, G. F., Tallini, K., Furlanetto, V., Vargas, C. R., Wannmacher, C. M., and Wajner, M. (2001). Reduction of large neutral amino acid level in plasma and brain of hyperleucinemic rats. Neurochem. Int. 38:529–537.

    Article  PubMed  Google Scholar 

  • Arstall, M. A., Bailey, C., Gross, W. L., Bak, M., Balligand, J. L., and Kelly, R. A. (1998). Reversible S-nitrosation of creatine kinase by nitric oxide in adult rat ventricular myocytes. J. Mol. Cell. Cardiol. 30:979–988.

    Article  CAS  PubMed  Google Scholar 

  • Benda, P., Lightbody, J., Sato, G., Levine, L., and Sweet, W. (1968). Differentiated rat glial cell strain in culture. Science 161:370–371.

    Article  CAS  PubMed  Google Scholar 

  • Bessman, S. P., and Carpenter, C. L. (1985). The creatine–creatine phosphate energy shuttle. Annu. Ver. Biochem. 54:831–865.

    Article  CAS  Google Scholar 

  • Bridi, R., Braun, C. A., Zorzi, G. K., Wannmacher, C. D., Wajner, M., Lissi, E. G., and Dutra-Filho, C. S. (2005). α-Keto acids accumulating in maple syrup urine disease stimulate lipid peroxidation and reduce antioxidant defences in cerebral cortex from young rats. Metab. Brain Dis. 20:155–167.

    Article  CAS  PubMed  Google Scholar 

  • Brustovetsky, N., Brustovetsky, T., and Dubiski, J. M. (2001). On the mechanisms of neuroprotection by creatine and phosphocreatine. J. Neurochem. 76:425–434.

    Article  CAS  PubMed  Google Scholar 

  • Burbaeva, G. S., Savushkina, O. K., and Dmitrievm, A. D. (1999). Brain isoforms of creatine kinase in health and mental disease: Alzheimer's disease and schizophrenia. Vestn. Ross. Akad. Med. Nauk. 1:20–24.

    PubMed  Google Scholar 

  • Burmistrov, S. O., Mashek, O. P., and Kotin, A. M. (1992). The action of acute alcoholic intoxication on antioxidant system and creatine kinase activity in the brain of rat embryos. Eksp. Klin. Farmakol. 55:54–56.

    CAS  PubMed  Google Scholar 

  • Chuang, D. T., and Shih, V. E. (2001). Maple syrup urine disease (branched-chain ketoaciduria). In Scriver, C. R., Beaudet, A. L., Sly, W. L., and Valle. D. (eds.), The Metabolic and Molecular Bases of Inherited Disease, McGraw-Hill, New York, pp. 1971–2005.

    Google Scholar 

  • Danner, D. J., and Elsas, J. L. (1989). Disorders of branched chain amino acid and keto acid metabolism. In Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle, D. (eds.), The Metabolic Basis of Inherited Disease, Mc Graw Hill, New York, pp. 671–692.

    Google Scholar 

  • Dechent, P., Pouwels, P. J., Wilken, B., Hanefeld, F., and Frahm, J. (1999). Increase of total creatine in human brain after oral supplementation of creatine-monohydrate. Am. J. Physiol. 277:R698–R704.

    CAS  PubMed  Google Scholar 

  • Efron, M. L. (1965). Aminoaciduria. N. Engl. J. Med. 272:1058–1067.

    CAS  PubMed  Google Scholar 

  • Fontella, F. U., Gassen, E., Pulrolnik, V., Wannmacher, C. M. D., Klein, A. B., Wajner, M., and Dutra-Filho, C. S. (2002). Stimulation of lipid peroxidation in vitro in rat brain by the metabolites accumulating in maple syrup urine disease. Met. Brain Dis. 17:47–54.

    Article  CAS  Google Scholar 

  • Funchal, C., de Lima Pelaez, P., Oliveira Loureiro, S., Vivian, L., Dall Bello Pessutto, F., Almeida, L. M. V., Wofchuk, S. T., Wajner, M., and Pessoa-Pureur, R. (2002). α-Ketoisocaproic acid regulates phosphorylation of intermediate filaments in postnatal rat cortical slices through ionotropic glutamatergic receptors. Dev. Brain Res. 139:267–276.

    Article  CAS  Google Scholar 

  • Funchal, C., Gottfried, C., Almeida, L. M. V., Wajner, M., and Pessoa-Pureur, R. (2004a). Evidence that the branched chain α-keto acids accumulating in maple syrup urine disease induce morphological alterations and death in cultured astrocytes from rat cerebral cortex. Glia 48:230–240.

    Article  Google Scholar 

  • Funchal, C., Rosa, A. M., Wajner, M., Wofchuk, S., and Pessoa-Pureur, R. (2004b). Reduction of glutamate uptake into cerebral cortex of developing rats by the branched-chain α-keto acids accumulating in maple syrup urine disease. Neurochem. Res. 29:747–753.

    Article  CAS  Google Scholar 

  • Funchal, C., Zamoner, A., Santos, A. Q., Moretto, M. B., Rocha, J. B. T., Wajner, M., and Pessoa-Pureur, R. (2005). Evidence that intracellular Ca2+ mediates the effect of alpha-ketoisocaproic acid on the phosphorylating system of cytoskeletal proteins from cerebral cortex of immature rats. J. Neurol. Sci. 283:75–82.

    Article  CAS  Google Scholar 

  • Goya, L., Feng, P. T., Aliabadi, S., and Timiras, P. S. (1996). Effect of growth factors on the in vitro growth and differentiation of early and late passages of C6 glioma cells. Int. J. Dev. Neurosci. 14:409–417.

    CAS  PubMed  Google Scholar 

  • Haghighat, N., and McCandless, D. W. (1997). Effect of ammonium chloride on energy metabolism of astrocytes and C6-glioma cells. Metab. Brain Dis. 12:287–298.

    Article  CAS  PubMed  Google Scholar 

  • Haghighat, N., McCandless, D. W., and Geraminegad, P. (2000). Responses in primary astrocytes and C6-glioma cells to ammonium chloride and dibutyryl cyclic-AMP. Neurochem. Res. 25:277–284.

    Article  CAS  PubMed  Google Scholar 

  • Halestrap, A., Brand, M. D., and Denton, R. M. (1974). Inhibition of mitochondrial pyruvate transport by phenylpyruvate and α-ketoisocaproate. Biochem. Biophys. Acta 367:102–108.

    Article  CAS  PubMed  Google Scholar 

  • Happe, H. K., and Murrin, L. C. (1995). In situ hybridization analysis of CHOT, a creatine transporter, in the rat central nervous system. J. Comp. Neurol. 35:94–103.

    Article  Google Scholar 

  • Hensley, K., Hall, N., Subramaniam, R., Cole, P., Harris, M., Aksenova, M. V., Aksenove, M. Y., Gabbita, S. P., Carney, J. M., Lowell, M., Markesbery, W. R., and Butterfield, D. A. (1995). Brain regional correspondence between Alzheimer's disease histopathology biomarkers of protein oxidation. J. Neurochem. 65:2146–2156.

    Article  CAS  PubMed  Google Scholar 

  • Howell, R. K., and Lee, M. (1963). Influence of alpha-ketoacids on the respiration of brain in vitro. Proc. Soc. Exp. Biol. Med. 113:660–663.

    CAS  PubMed  Google Scholar 

  • Hughes, B. P. (1962). A method for the estimation of serum creatine kinase and its use in comparing creatine kinase and aldolase activity in normal and pathological serum. Clin. Chim. Acta 7:597–603.

    Article  CAS  PubMed  Google Scholar 

  • Jouvet, P., Rustin, P., Taylor, D. L., Pocock, J. M., Felderhoff-Mueser, U., Mazarakis, N. D., Sarrat, C., Joashi, U., Kozma, M., Greewood, K., Edwards, A. D., and Mehmet, H. (2000). Branched chain amino acids induce apoptosis in neural cells without mitochondrial membrane depolarization or cytochrome c release: Implications for neurological impairment associated with maple syrup urine disease. Mol. Biol. Cell 11:1919–1932.

    CAS  PubMed  Google Scholar 

  • Khuchua, Z. A., Qin, W., Boero, J., Cheng, J., Payne, R. M., Saks, V. A., and Strauss, A. W. (1998). Octamer formation and coupling of cardiac sarcomeric mitochondrial creatine kinase are mediated by charged N-terminal residues. J. Biol. Chem. 273:22990–22996.

    Article  CAS  PubMed  Google Scholar 

  • Kölker, S., Ahlemeyer, B., Krieglstein, J., and Hoffmann, G. F. (2001). Contribution of reactive oxygen species to 3-hydroxyglutarate neurotoxicity in primary neuronal cultures from chick embryo telencephalons. Pediatr. Res. 50:76–82.

    Article  PubMed  Google Scholar 

  • Konorev, E. A., Hogg, N., and Kalyanaraman, B. (1998). Rapid and irreversible inhibition of creatine kinase by peroxinitrite. FEBS Lett. 427:171–174.

    Article  CAS  PubMed  Google Scholar 

  • Land, J. M., Mowbray, J., and Clark, J. B. (1976). Control of pyruvate and β-hydroxy-butyrate utilization in rat brain mitochondria and its relevance to phenylketonuria and maple syrup urine disease. J. Neurochem. 26:823–830.

    Article  CAS  PubMed  Google Scholar 

  • Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265–267.

    CAS  PubMed  Google Scholar 

  • Mangoura, D., Sakellaridis, N., Jones, J., and Vernadakis, A. (1989). Early and late passage C6 glial cell growth: Similarities with primary glial cells in culture. Neurochem. Res. 14:941–947.

    Article  CAS  PubMed  Google Scholar 

  • Meister, A., and Anderson, M. E. (1983). Glutathione. Annu. Ver. Biochem. 52:711–760.

    Article  CAS  Google Scholar 

  • Nord, A., Van Doorninck, W. J., and Greene, C. (1991). Developmental profile of patients with maple syrup urine disease. J. Inherit. Metab. Dis. 14:881–889.

    Article  CAS  PubMed  Google Scholar 

  • Nyhan, W. L. (1984). Abnormalities in Amino Acid Metabolism in Clinical Medicine, Appleton-Century-Crofts, Norwalk, CT.

  • Parker, K. P., Norenberg, M. D., and Vernadakis, A. (1980). “Transdifferentiation” of C6 glial cells in culture. Science 208:179–181.

    Article  CAS  PubMed  Google Scholar 

  • Pilla, C., Cardozo, R. F., Dutra-Filho, C. S., Wyse, A. T., Wajner, M., and Wannmacher, C. M. (2003). Creatine kinase activity from rat brain is inhibited by branched-chain amino acids in vitro. Neurochem. Res. 28:675–679.

    Article  CAS  PubMed  Google Scholar 

  • Scheff, S. W., and Dhillon, H. S. (2004). Creatine-enhanced diet alters levels of lactate and free fatty acids after experimental brain injury. Neurochem. Res. 29:469–479.

    Article  CAS  PubMed  Google Scholar 

  • Schlattner, U., and Wallimann, T. (2000). Octamers of mitochondrial creatine kinase isoenzymes differ in stability and membrane binding. J. Biol. Chem. 275:17314–17320.

    Article  CAS  PubMed  Google Scholar 

  • Schnyder, T., Gross, H., Winkler, H., Eppenberger, H. M., and Wallimann, T. (1991). Structure of the mitochondrial creatine kinase octamer: High-resolution shadowing and image averaging of single molecules and formation of linear filaments under specific staining conditions. J. Cell Biol. 112:95–101.

    Article  CAS  PubMed  Google Scholar 

  • Schuck, P. F., Rosa, R. B., Pettenuzzo, L. F., Sitta, A., Wannmacher, C. M. D., Wyse, A. T. S., and Wajner, M. (2004). Inhibition of mitochondrial creatine kinase activity from rat cerebral cortex by methylmalonic acid. Neurochem. Int. 45:661–667.

    Article  CAS  PubMed  Google Scholar 

  • Sener, R. N. (2002). Diffusion magnetic resonance imaging in intermediate form of maple syrup urine disease. J. Neuroimaging 12:368–370.

    Article  CAS  PubMed  Google Scholar 

  • Sgaravati, A. M., Rosa, R. B., Schuck, P. F. Ribeiro, C. A. J., Wannmacher, C. M. D., Wyse, A. T. S., Dutra-Filho, C. S., and Wajner, M. (2003). Inhibition of brain energy metabolism by the α-keto acids accumulating in maple syrup urine disease. Biochim. Biophys. Acta 1639:232–238.

    Google Scholar 

  • Stachowiak, O., Dolder, M., Wallimann, T., and Richter, C. (1998). Mitochondrial creatine kinase is a prime target of peroxynitrite-induced modification and inactivation. J. Biol. Chem. 273:16694–16699.

    Article  CAS  PubMed  Google Scholar 

  • Sullivan, P. G., Geiser, J. D., Mattson, M. P., and Scheff, S. W. (2000). Dietary supplement creatine protects against traumatic bran injury. Ann. Neurol. 48:723–729.

    Article  CAS  PubMed  Google Scholar 

  • Taketomi, T., Kunishita, T., Hara, A., and Mizushima, S. (1983). Abnormal protein and lipidic composition of the cerebral myelin of a patient with maple syrup urine disease. Jpn. J. Exp. Med. 53:109–116.

    CAS  PubMed  Google Scholar 

  • Tashian, R. (1961). Inhibition of brain glutamic acid descarboxylase by phenylalanine, leucine and valine derivates: A suggestion concerning the neurological defect in phenylketonuria and branched-chain keto aciduria. Metabolism 10:393–400.

    CAS  PubMed  Google Scholar 

  • Tomimoto, H., Yamamoto, K., Homburger, H. A., and Yanagihara, T. (1993). Immunoelectron microscopic investigation of creatine kinase BB-isoenzyme alter cerebral ischemia in gerbilis. Acta Neuropathol. 86:447–455.

    CAS  PubMed  Google Scholar 

  • Treacy, E., Clow, C. L., Reade, T. R., Chitayat, D., Mamer, O. A., and Scriver, C. R. (1992). Maple syrup urine disease: Interrelations between branched-chain amino-, oxo- and hydroxyacids; implications for treatment; associations with CNS dysmyelination. J. Inherit. Metab. Dis. 15:121–135.

    Article  CAS  PubMed  Google Scholar 

  • Tribble, D., and Shapira, R. (1983). Myelin proteins: Degradation in rat brain initiated by metabolites causative of maple syrup urine disease. Biochem. Biophys. Res. Commun. 114:440–446.

    Article  CAS  PubMed  Google Scholar 

  • Uziel, G., Savoiardo, M., and Nardocci, N. (1988). CT and MRI in maple syrup urine disease. Neurology 38:486–488.

    CAS  PubMed  Google Scholar 

  • Vasques, V. C., Brinco, F., and Wajner, M. (2005). Intrahippocampal administration of the branched-chain α-hydroxy acids accumulating in maple syrup urine disease compromises rat performance in aversive and non-aversive behavioral tasks. J. Neurol. Sci. 232:11–21.

    Article  CAS  Google Scholar 

  • Vernadakis, A., Kentroti, S., Brodie, C., Mangoura, D., and Sakellaridis, N. (1991). C6 glioma cells of early passage have progenitor properties in culture. Adv. Exp. Med. Biol. 296:181–195.

    Article  CAS  PubMed  Google Scholar 

  • Wajner, M., Coelho, D. M., Barschak, A. G., Araújo, P. R., Pires, R. F., Lulhier, F. L. G., and Vargas, C. R. (2000). Reduction of large neutral amino acid concentration in plasma and CSF of patients with maple syrup urine disease during crises. J. Inherit. Metab. Dis. 23:505–512.

    Article  CAS  PubMed  Google Scholar 

  • Wajner, M., and Vargas, C. R. (1999). Reduction of plasma concentrations of large neutral amino acids in patients with maple urine disease during crises. Arch. Dis. Child 80:579–579.

    Article  CAS  PubMed  Google Scholar 

  • Wallimann, T., Dolder, M., Schlattner, U., Eder, M., Hornemann, T., O'Gorman, E., Ruck, A., and Brdiczka, D. (1998). Some new aspects of creatine kinase (CK): Compartmentation, structure, function and regulation for cellular and mitochondrial bioenergetics and physiology. Biofactors 8:229–234.

    Article  CAS  PubMed  Google Scholar 

  • Wallimann, T., Wyss, M., Brdiczka, D., Nicolay, K., and Eppenberger, H. M. (1992). Intracellular compartmentation, structure and function of creatine kinase isoenzymes in tissues with high and fluctuating energy demands: The phosphocreatine circuit for cellular energy homeostasis. Biochem. J. 281:21–40.

    CAS  PubMed  Google Scholar 

  • Wilken, B., Ramirez, J. M., Probst, I., Rchter, D. W., and Henefeld, F. (1998). Creatine protects the central respiratory network of mammals under anoxic conditions. Pediatr. Res. 43:8–14.

    Article  CAS  PubMed  Google Scholar 

  • Wolosker, H., Panizzutti, R., and Englender, S. (1996). Inhibition of creatine kinase by S-nitrosoglutathione. FEBS Lett. 392:274–276.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, W., Narayanan, M., and Friedlander, R. M. (2003). Additive neuroprotective effects of minocycline with creatine in a mouse model of ALS. Ann. Neurol. 53:267–270.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cláudia Funchal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Funchal, C., Schuck, P.F., Santos, A.Q.d. et al. Creatine and Antioxidant Treatment Prevent the Inhibition of Creatine Kinase Activity and the Morphological Alterations of C6 Glioma Cells Induced by the Branched-Chain α-Keto Acids Accumulating in Maple Syrup Urine Disease. Cell Mol Neurobiol 26, 67–79 (2006). https://doi.org/10.1007/s10571-006-9098-9

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-006-9098-9

Keywords

Navigation