Skip to main content
Log in

Regulation of Hypothalamo-Pituitary-Adrenocortical Responses to Stressors by the Nucleus of the Solitary Tract/Dorsal Vagal Complex

  • Review Paper
  • Published:
Cellular and Molecular Neurobiology Aims and scope Submit manuscript

Abstract

Hindbrain neurons in the nucleus of the solitary tract (NTS) are critical for regulation of hypothalamo-pituitary-adrenocortical (HPA) responses to stress. It is well known that noradrenergic (as well as adrenergic) neurons in the NTS send direct projections to hypophysiotropic corticotropin-releasing hormone (CRH) neurons and control activation of HPA axis responses to acute systemic (but not psychogenic) stressors. Norepinephrine (NE) signaling via alpha1 receptors is primarily excitatory, working either directly on CRH neurons or through presynaptic activation of glutamate release. However, there is also evidence for NE inhibition of CRH neurons (possibly via beta receptors), an effect that may occur at higher levels of stimulation, suggesting that NE effects on the HPA axis may be context-dependent. Lesions of ascending NE inputs to the paraventricular nucleus attenuate stress-induced ACTH but not corticosterone release after chronic stress, indicating reduction in central HPA drive and increased adrenal sensitivity. Non-catecholaminergic NTS glucagon-like peptide 1/glutamate neurons play a broader role in stress regulation, being important in HPA activation to both systemic and psychogenic stressors as well as HPA axis sensitization under conditions of chronic stress. Overall, the data highlight the importance of the NTS as a key regulatory node for coordination of acute and chronic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Alonso G, Szafarczyk A, Balmefrezol M, Assenmacher I (1986) Immunocytochemical evidence for stimulatory control by the ventral noradrenergic bundle of parvocellular neurons of the paraventricular nucleus secreting corticotropin releasing hormone and vasopressin in rats. Brain Res 397(2):297–307

    Article  CAS  PubMed  Google Scholar 

  • Bechtold AG, Patel G, Hochhaus G, Scheuer DA (2009) Chronic blockade of hindbrain glucocorticoid receptors reduces blood pressure responses to novel stress and attenuates adaptation to repeated stress. Am J Physiol Regul Integr Comp Physiol 296(5):R1445–R1454. doi:10.1152/ajpregu.00095.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bienkowski MS, Rinaman L (2008) Noradrenergic inputs to the paraventricular hypothalamus contribute to hypothalamic-pituitary-adrenal axis and central Fos activation in rats after acute systemic endotoxin exposure. Neuroscience 156(4):1093–1102. doi:10.1016/j.neuroscience.2008.08.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blandino P Jr, Hueston CM, Barnum CJ, Bishop C, Deak T (2013) The impact of ventral noradrenergic bundle lesions on increased IL-1 in the PVN and hormonal responses to stress in male Sprague Dawley rats. Endocrinology 154(7):2489–2500. doi:10.1210/en.2013-1075

    Article  CAS  PubMed  Google Scholar 

  • Bornstein SR, Engeland WC, Ehrhart-Bornstein M, Herman JP (2008) Dissociation of ACTH and glucocorticoids. Trends Endocrinol Metab 19(5):175–180. doi:10.1016/j.tem.2008.01.009

    Article  CAS  PubMed  Google Scholar 

  • Buijs RM, Wortel J, Van Heerikhuize JJ, Feenstra MG, Ter Horst GJ, Romijn HJ, Kalsbeek A (1999) Anatomical and functional demonstration of a multisynaptic suprachiasmatic nucleus adrenal (cortex) pathway. Eur J Neurosci 11(5):1535–1544

    Article  CAS  PubMed  Google Scholar 

  • Buller K, Xu Y, Dayas C, Day T (2001) Dorsal and ventral medullary catecholamine cell groups contribute differentially to systemic interleukin-1beta-induced hypothalamic pituitary adrenal axis responses. Neuroendocrinology 73(2):129–138. doi:10.1159/000054629

    Article  CAS  PubMed  Google Scholar 

  • Bundzikova-Osacka J, Ghosal S, Packard BA, Ulrich-Lai YM, Herman JP (2015) Role of nucleus of the solitary tract noradrenergic neurons in post-stress cardiovascular and hormonal control in male rats. Stress 18(2):221–232. doi:10.3109/10253890.2015.1013531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carvalho-Netto EF, Myers B, Jones K, Solomon MB, Herman JP (2011) Sex differences in synaptic plasticity in stress-responsive brain regions following chronic variable stress. Physiol Behav 104(2):242–247. doi:10.1016/j.physbeh.2011.01.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chronwall BM, DiMaggio DA, Massari VJ, Pickel VM, Ruggiero DA, O’Donohue TL (1985) The anatomy of neuropeptide-Y-containing neurons in rat brain. Neuroscience 15(4):1159–1181

    Article  CAS  PubMed  Google Scholar 

  • Cole RL, Sawchenko PE (2002) Neurotransmitter regulation of cellular activation and neuropeptide gene expression in the paraventricular nucleus of the hypothalamus. J Neurosci 22(3):959–969

    CAS  PubMed  Google Scholar 

  • Cunningham ET Jr, Sawchenko PE (1988) Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. J Comp Neurol 274(1):60–76

    Article  PubMed  Google Scholar 

  • Cunningham ET Jr, Bohn MC, Sawchenko PE (1990) Organization of adrenergic inputs to the paraventricular and supraoptic nuclei of the hypothalamus in the rat. J Comp Neurol 292(4):651–667

    Article  PubMed  Google Scholar 

  • Cunningham ET Jr, Simmons DM, Swanson LW, Sawchenko PE (1991) Enkephalin immunoreactivity and messenger RNA in a discrete projection from the nucleus of the solitary tract to the nucleus ambiguous in the rat. J Comp Neurol 307(1):1–16. doi:10.1002/cne.903070102

    Article  CAS  PubMed  Google Scholar 

  • Daftary SS, Boudaba C, Szabo K, Tasker JG (1998) Noradrenergic excitation of magnocellular neurons in the rat hypothalamic paraventricular nucleus via intranuclear glutamatergic circuits. J Neurosci 18(24):10619–10628

    CAS  PubMed  Google Scholar 

  • Daftary SS, Boudaba C, Tasker JG (2000) Noradrenergic regulation of parvocellular neurons in the rat hypothalamic paraventricular nucleus. Neuroscience 96(4):743–751

    Article  CAS  PubMed  Google Scholar 

  • Daubert DL, McCowan M, Erdos B, Scheuer DA (2012) Nucleus of the solitary tract catecholaminergic neurons modulate the cardiovascular response to psychological stress in rats. J Physiol 590(19):4881–4895. doi:10.1113/jphysiol.2012.232314

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Daubert DL, Looney BM, Clifton RR, Cho JN, Scheuer DA (2014) Elevated corticosterone in the dorsal hindbrain increases plasma norepinephrine and neuropeptide Y, and recruits a vasopressin response to stress. Am J Physiol Regul Integr Comp Physiol 307(2):R212–R224. doi:10.1152/ajpregu.00326.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Day HE, Campeau S, Watson SJ Jr, Akil H (1999) Expression of alpha(1b) adrenoceptor mRNA in corticotropin-releasing hormone-containing cells of the rat hypothalamus and its regulation by corticosterone. J Neurosci 19(22):10098–10106

    CAS  PubMed  Google Scholar 

  • De Kloet ER, Vreugdenhil E, Oitzl MS, Joels M (1998) Brain corticosteroid receptor balance in health and disease. Endocr Rev 19(3):269–301. doi:10.1210/edrv.19.3.0331

    PubMed  Google Scholar 

  • Duncko R, Kiss A, Skultetyova I, Rusnak M, Jezova D (2001) Corticotropin-releasing hormone mRNA levels in response to chronic mild stress rise in male but not in female rats while tyrosine hydroxylase mRNA levels decrease in both sexes. Psychoneuroendocrinology 26(1):77–89

    Article  CAS  PubMed  Google Scholar 

  • Engeland WC, Byrnes GJ, Presnell K, Gann DS (1981) Adrenocortical sensitivity to adrenocorticotropin (ACTH) in awake dogs changes as a function of the time of observation and after hemorrhage independently of changes in ACTH. Endocrinology 108(6):2149–2153. doi:10.1210/endo-108-6-2149

    Article  CAS  PubMed  Google Scholar 

  • Engeland WC, Lilly MP, Gann DS (1985) Sympathetic adrenal denervation decreases adrenal blood flow without altering the cortisol response to hemorrhage. Endocrinology 117(3):1000–1010. doi:10.1210/endo-117-3-1000

    Article  CAS  PubMed  Google Scholar 

  • Evanson NK, Herman JP (2015a) Metabotropic glutamate receptor-mediated signaling dampens the HPA axis response to restraint stress. Physiol Behav 150:2–7. doi:10.1016/j.physbeh.2015.02.027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evanson NK, Herman JP (2015b) Role of paraventricular nucleus glutamate signaling in regulation of HPA axis stress responses. Interdiscip Inf Sci 21(3):253–260. doi:10.4036/iis.2015.B.10

    PubMed  PubMed Central  Google Scholar 

  • Everitt BJ, Hokfelt T, Terenius L, Tatemoto K, Mutt V, Goldstein M (1984) Differential co-existence of neuropeptide Y (NPY)-like immunoreactivity with catecholamines in the central nervous system of the rat. Neuroscience 11(2):443–462

    Article  CAS  PubMed  Google Scholar 

  • Fallon JH, Leslie FM (1986) Distribution of dynorphin and enkephalin peptides in the rat brain. J Comp Neurol 249(3):293–336. doi:10.1002/cne.902490302

    Article  CAS  PubMed  Google Scholar 

  • Feldman S, Weidenfeld J (1997) Hypothalamic mechanisms mediating glutamate effects on the hypothalamo-pituitary-adrenocortical axis. J Neural Transm (Vienna) 104(6–7):633–642. doi:10.1007/BF01291881

    Article  CAS  Google Scholar 

  • Flak JN, Ostrander MM, Tasker JG, Herman JP (2009) Chronic stress-induced neurotransmitter plasticity in the PVN. J Comp Neurol 517(2):156–165. doi:10.1002/cne.22142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flak JN, Myers B, Solomon MB, McKlveen JM, Krause EG, Herman JP (2014) Role of paraventricular nucleus-projecting norepinephrine/epinephrine neurons in acute and chronic stress. Eur J Neurosci 39(11):1903–1911. doi:10.1111/ejn.12587

    Article  PubMed  PubMed Central  Google Scholar 

  • Gaillet S, Alonso G, Le Borgne R, Barbanel G, Malaval F, Assenmacher I, Szafarczyk A (1993) Effects of discrete lesions in the ventral noradrenergic ascending bundle on the corticotropic stress response depend on the site of the lesion and on the plasma levels of adrenal steroids. Neuroendocrinology 58(4):408–419

    Article  CAS  PubMed  Google Scholar 

  • Ghosal S, Myers B, Herman JP (2013) Role of central glucagon-like peptide-1 in stress regulation. Physiol Behav 122:201–207. doi:10.1016/j.physbeh.2013.04.003

    Article  CAS  PubMed  Google Scholar 

  • Ghosal S, Bundzikova-Osacka J, Dolgas CM, Myers B, Herman JP (2014) Glucocorticoid receptors in the nucleus of the solitary tract (NTS) decrease endocrine and behavioral stress responses. Psychoneuroendocrinology 45:142–153. doi:10.1016/j.psyneuen.2014.03.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosal S, Packard AE, Mahbod P, McKlveen JM, Seeley RJ, Myers B, Ulrich-Lai Y, Smith EP, D’Alessio DA, Herman JP (2017) Disruption of glucagon-like peptide 1 signaling in Sim1 neurons reduces physiological and behavioral reactivity to acute and chronic stress. J Neurosci 37(1):184–193. doi:10.1523/JNEUROSCI.1104-16.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goebel-Stengel M, Stengel A, Wang L, Tache Y (2009) Restraint stress activates nesfatin-1-immunoreactive brain nuclei in rats. Brain Res 1300:114–124. doi:10.1016/j.brainres.2009.08.082

    Article  CAS  Google Scholar 

  • Goebel-Stengel M, Wang L, Stengel A, Tache Y (2011) Localization of nesfatin-1 neurons in the mouse brain and functional implication. Brain Res 1396:20–34. doi:10.1016/j.brainres.2011.04.031

    Article  CAS  PubMed  Google Scholar 

  • Han SK, Chong W, Li LH, Lee IS, Murase K, Ryu PD (2002) Noradrenaline excites and inhibits GABAergic transmission in parvocellular neurons of rat hypothalamic paraventricular nucleus. J Neurophysiol 87(5):2287–2296

    Article  CAS  PubMed  Google Scholar 

  • Hannibal J (2002) Pituitary adenylate cyclase-activating peptide in the rat central nervous system: an immunohistochemical and in situ hybridization study. J Comp Neurol 453(4):389–417. doi:10.1002/cne.10418

    Article  CAS  PubMed  Google Scholar 

  • Harfstrand A, Fuxe K, Cintra A, Agnati LF, Zini I, Wikstrom AC, Okret S, Yu ZY, Goldstein M, Steinbusch H et al (1986) Glucocorticoid receptor immunoreactivity in monoaminergic neurons of rat brain. Proc Natl Acad Sci USA 83(24):9779–9783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Herman JP (1993) Regulation of adrenocorticosteroid receptor mRNA expression in the central nervous system. Cell Mol Neurobiol 13(4):349–372

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, Cullinan WE (1997) Neurocircuitry of stress: central control of the hypothalamo-pituitary-adrenocortical axis. Trends Neurosci 20(2):78–84

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, Eyigor O, Ziegler DR, Jennes L (2000) Expression of ionotropic glutamate receptor subunit mRNAs in the hypothalamic paraventricular nucleus of the rat. J Comp Neurol 422(3):352–362

    Article  CAS  PubMed  Google Scholar 

  • Herman JP, McCreary BJ, Bettenhausen K, Ziegler DR (2002) Neurocircuit activation of the hypothalamo-pituitary-adrenocortical axis: roles for ascending norepinephrine systems. In: McCarty R, Aguilera G, Sabban EL, Kvetnansky R (eds) Stress: neural, endocrine and molecular studies. Taylor and Francis, London, pp 19–24

    Google Scholar 

  • Herman JP, McKlveen JM, Ghosal S, Kopp B, Wulsin A, Makinson R, Scheimann J, Myers B (2016) Regulation of the hypothalamic-pituitary-adrenocortical stress response. Compr Physiol 6(2):603–621. doi:10.1002/cphy.c150015

    Article  PubMed  PubMed Central  Google Scholar 

  • Inoue W, Baimoukhametova DV, Fuzesi T, Wamsteeker Cusulin JI, Koblinger K, Whelan PJ, Pittman QJ, Bains JS (2013) Noradrenaline is a stress-associated metaplastic signal at GABA synapses. Nat Neurosci 16(5):605–612. doi:10.1038/nn.3373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itoi K, Sugimoto N (2010) The brainstem noradrenergic systems in stress, anxiety and depression. J Neuroendocrinol 22(5):355–361. doi:10.1111/j.1365-2826.2010.01988.x

    Article  CAS  PubMed  Google Scholar 

  • Jezova D, Herman JP (2016) Lessons from regular gathering of experts in stress research: focus on pathophysiological consequences of stress exposure. Stress 19(4):339–340. doi:10.1080/10253890.2016.1213515

    Article  PubMed  Google Scholar 

  • Khachaturian H, Lewis ME, Watson SJ (1983) Enkephalin systems in diencephalon and brainstem of the rat. J Comp Neurol 220(3):310–320. doi:10.1002/cne.902200305

    Article  CAS  PubMed  Google Scholar 

  • Kinzig KP, D’Alessio DA, Herman JP, Sakai RR, Vahl TP, Figueiredo HF, Murphy EK, Seeley RJ (2003) CNS glucagon-like peptide-1 receptors mediate endocrine and anxiety responses to interoceptive and psychogenic stressors. J Neurosci 23(15):6163–6170

    CAS  PubMed  Google Scholar 

  • Larsen PJ, Tang-Christensen M, Holst JJ, Orskov C (1997) Distribution of glucagon-like peptide-1 and other preproglucagon-derived peptides in the rat hypothalamus and brainstem. Neuroscience 77(1):257–270

    Article  CAS  PubMed  Google Scholar 

  • Li HY, Ericsson A, Sawchenko PE (1996) Distinct mechanisms underlie activation of hypothalamic neurosecretory neurons and their medullary catecholaminergic afferents in categorically different stress paradigms. Proc Natl Acad Sci USA 93(6):2359–2364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liposits Z, Phelix C, Paull WK (1986a) Adrenergic innervation of corticotropin releasing factor (CRF)-synthesizing neurons in the hypothalamic paraventricular nucleus of the rat. A combined light and electron microscopic immunocytochemical study. Histochemistry 84(3):201–205

    Article  CAS  PubMed  Google Scholar 

  • Liposits Z, Sherman D, Phelix C, Paull WK (1986b) A combined light and electron microscopic immunocytochemical method for the simultaneous localization of multiple tissue antigens. Tyrosine hydroxylase immunoreactive innervation of corticotropin releasing factor synthesizing neurons in the paraventricular nucleus of the rat. Histochemistry 85(2):95–106

    Article  CAS  PubMed  Google Scholar 

  • Llewellyn-Smith IJ, Gnanamanickam GJ, Reimann F, Gribble FM, Trapp S (2013) Preproglucagon (PPG) neurons innervate neurochemically identified autonomic neurons in the mouse brainstem. Neuroscience 229:130–143. doi:10.1016/j.neuroscience.2012.09.071

    Article  CAS  PubMed  Google Scholar 

  • Ma S, Morilak DA (2005) Chronic intermittent cold stress sensitises the hypothalamic-pituitary-adrenal response to a novel acute stress by enhancing noradrenergic influence in the rat paraventricular nucleus. J Neuroendocrinol 17(11):761–769. doi:10.1111/j.1365-2826.2005.01372.x

    Article  CAS  PubMed  Google Scholar 

  • Maniscalco JW, Rinaman L (2013) Overnight food deprivation markedly attenuates hindbrain noradrenergic, glucagon-like peptide-1, and hypothalamic neural responses to exogenous cholecystokinin in male rats. Physiol Behav 121:35–42. doi:10.1016/j.physbeh.2013.01.012

    Article  CAS  PubMed  Google Scholar 

  • Maniscalco JW, Rinaman L (2017) Interoceptive modulation of neuroendocrine, emotional, and hypophagic responses to stress. Physiol Behav. doi:10.1016/j.physbeh.2017.01.027

    PubMed  Google Scholar 

  • Maniscalco JW, Kreisler AD, Rinaman L (2012) Satiation and stress-induced hypophagia: examining the role of hindbrain neurons expressing prolactin-releasing Peptide or glucagon-like Peptide 1. Front Neurosci 6:199. doi:10.3389/fnins.2012.00199

    PubMed  Google Scholar 

  • Maniscalco JW, Zheng H, Gordon PJ, Rinaman L (2015) Negative energy balance blocks neural and behavioral responses to acute stress by “Silencing” central glucagon-like peptide 1 signaling in rats. J Neurosci 35(30):10701–10714. doi:10.1523/JNEUROSCI.3464-14.2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maruyama M, Matsumoto H, Fujiwara K, Noguchi J, Kitada C, Fujino M, Inoue K (2001) Prolactin-releasing peptide as a novel stress mediator in the central nervous system. Endocrinology 142(5):2032–2038. doi:10.1210/endo.142.5.8118

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto H, Maruyama M, Noguchi J, Horikoshi Y, Fujiwara K, Kitada C, Hinuma S, Onda H, Nishimura O, Inoue K, Fujino M (2000) Stimulation of corticotropin-releasing hormone-mediated adrenocorticotropin secretion by central administration of prolactin-releasing peptide in rats. Neurosci Lett 285(3):234–238

    Article  CAS  PubMed  Google Scholar 

  • Mera T, Fujihara H, Kawasaki M, Hashimoto H, Saito T, Shibata M, Saito J, Oka T, Tsuji S, Onaka T, Ueta Y (2006) Prolactin-releasing peptide is a potent mediator of stress responses in the brain through the hypothalamic paraventricular nucleus. Neuroscience 141(2):1069–1086. doi:10.1016/j.neuroscience.2006.04.023

    Article  CAS  PubMed  Google Scholar 

  • Merchenthaler I, Lane M, Shughrue P (1999) Distribution of pre-pro-glucagon and glucagon-like peptide-1 receptor messenger RNAs in the rat central nervous system. J Comp Neurol 403(2):261–280

    Article  CAS  PubMed  Google Scholar 

  • Morales T, Hinuma S, Sawchenko PE (2000) Prolactin-releasing peptide is expressed in afferents to the endocrine hypothalamus, but not in neurosecretory neurones. J Neuroendocrinol 12(2):131–140

    Article  CAS  PubMed  Google Scholar 

  • Nicholas AP, Pieribone V, Hokfelt T (1993) Distributions of mRNAs for alpha-2 adrenergic receptor subtypes in rat brain: an in situ hybridization study. J Comp Neurol 328(4):575–594. doi:10.1002/cne.903280409

    Article  CAS  PubMed  Google Scholar 

  • Pacak K, Palkovits M, Kopin IJ, Goldstein DS (1995a) Stress-induced norepinephrine release in the hypothalamic paraventricular nucleus and pituitary-adrenocortical and sympathoadrenal activity: in vivo microdialysis studies. Front Neuroendocrinol 16(2):89–150

    Article  CAS  PubMed  Google Scholar 

  • Pacak K, Palkovits M, Kvetnansky R, Yadid G, Kopin IJ, Goldstein DS (1995b) Effects of various stressors on in vivo norepinephrine release in the hypothalamic paraventricular nucleus and on the pituitary-adrenocortical axis. Ann NY Acad Sci 771:115–130

    Article  CAS  PubMed  Google Scholar 

  • Palkovits M, Mezey E, Eskay RL (1987) Pro-opiomelanocortin-derived peptides (ACTH/beta-endorphin/alpha-MSH) in brainstem baroreceptor areas of the rat. Brain Res 436(2):323–338

    Article  CAS  PubMed  Google Scholar 

  • Pieribone VA, Nicholas AP, Dagerlind A, Hokfelt T (1994) Distribution of alpha 1 adrenoceptors in rat brain revealed by in situ hybridization experiments utilizing subtype-specific probes. J Neurosci 14(7):4252–4268

    CAS  PubMed  Google Scholar 

  • Plotsky PM (1987) Facilitation of immunoreactive corticotropin-releasing factor secretion into the hypophysial-portal circulation after activation of catecholaminergic pathways or central norepinephrine injection. Endocrinology 121:924–934

    Article  CAS  PubMed  Google Scholar 

  • Priestley JV, Rethelyi M, Lund PK (1991) Semi-quantitative analysis of somatostatin mRNA distribution in the rat central nervous system using in situ hybridization. J Chem Neuroanat 4(2):131–153

    Article  CAS  PubMed  Google Scholar 

  • Ritter S, Watts AG, Dinh TT, Sanchez-Watts G, Pedrow C (2003) Immunotoxin lesion of hypothalamically projecting norepinephrine and epinephrine neurons differentially affects circadian and stressor-stimulated corticosterone secretion. Endocrinology 144(4):1357–1367. doi:10.1210/en.2002-221076

    Article  CAS  PubMed  Google Scholar 

  • Russell JA, Douglas AJ, Brunton PJ (2008) Reduced hypothalamo-pituitary-adrenal axis stress responses in late pregnancy: central opioid inhibition and noradrenergic mechanisms. Ann NY Acad Sci 1148:428–438. doi:10.1196/annals.1410.032

    Article  CAS  PubMed  Google Scholar 

  • Sands SA, Morilak DA (1999) Expression of alpha1D adrenergic receptor messenger RNA in oxytocin- and corticotropin-releasing hormone-synthesizing neurons in the rat paraventricular nucleus. Neuroscience 91(2):639–649

    Article  CAS  PubMed  Google Scholar 

  • Saphier D, Feldman S (1991) Catecholaminergic projections to tuberoinfundibular neurones of the paraventricular nucleus: III. Effects of adrenoceptor agonists and antagonists. Brain Res Bull 26(6):863–870

    Article  CAS  PubMed  Google Scholar 

  • Sarkar S, Fekete C, Legradi G, Lechan RM (2003) Glucagon like peptide-1 (7–36) amide (GLP-1) nerve terminals densely innervate corticotropin-releasing hormone neurons in the hypothalamic paraventricular nucleus. Brain Res 985(2):163–168

    Article  CAS  PubMed  Google Scholar 

  • Sawchenko PE, Li HY, Ericsson A (2000) Circuits and mechanisms governing hypothalamic responses to stress: a tale of two paradigms. Prog Brain Res 122:61–78

    Article  CAS  PubMed  Google Scholar 

  • Scheuer DA (2010) Regulation of the stress response in rats by central actions of glucocorticoids. Exp Physiol 95(1):26–31. doi:10.1113/expphysiol.2008.045971

    Article  CAS  PubMed  Google Scholar 

  • Schiltz JC, Sawchenko PE (2007) Specificity and generality of the involvement of catecholaminergic afferents in hypothalamic responses to immune insults. J Comp Neurol 502(3):455–467. doi:10.1002/cne.21329

    Article  CAS  PubMed  Google Scholar 

  • Schwaber JS, Kapp BS, Higgins G (1980) The origin and extent of direct amygdala projections to the region of the dorsal motor nucleus of the vagus and the nucleus of the solitary tract. Neurosci Lett 20(1):15–20

    Article  CAS  PubMed  Google Scholar 

  • Seal LJ, Small CJ, Dhillo WS, Kennedy AR, Ghatei MA, Bloom SR (2002) Prolactin-releasing peptide releases corticotropin-releasing hormone and increases plasma adrenocorticotropin via the paraventricular nucleus of the hypothalamus. Neuroendocrinology 76(2):70–78

    Article  CAS  PubMed  Google Scholar 

  • Siegel R, Chowers I, Conforti N, Feldman S (1980) Corticotrophin and corticosterone secretory patterns following acute neurogenic stress, in intact and in variously hypothalamic deafferented male rats. Brain Res 188(2):399–410

    Article  CAS  PubMed  Google Scholar 

  • Spiga F, Lightman SL (2015) Dynamics of adrenal glucocorticoid steroidogenesis in health and disease. Mol Cell Endocrinol 408:227–234. doi:10.1016/j.mce.2015.02.005

    Article  CAS  PubMed  Google Scholar 

  • Stornetta RL, Sevigny CP, Guyenet PG (2002) Vesicular glutamate transporter DNPI/VGLUT2 mRNA is present in C1 and several other groups of brainstem catecholaminergic neurons. J Comp Neurol 444(3):191–206. doi:10.1002/cne.10141

    Article  CAS  PubMed  Google Scholar 

  • Szafarczyk A, Malaval F, Laurent A, Gibaud R, Assenmacher I (1987) Further evidence for a central stimulatory action of catecholamines on adrenocorticotropin release in the rat. Endocrinology 121(3):883–892

    Article  CAS  PubMed  Google Scholar 

  • Tauchi M, Zhang R, D’Alessio DA, Seeley RJ, Herman JP (2008a) Role of central glucagon-like peptide-1 in hypothalamo-pituitary-adrenocortical facilitation following chronic stress. Exp Neurol 210(2):458–466. doi:10.1016/j.expneurol.2007.11.016

    Article  CAS  PubMed  Google Scholar 

  • Tauchi M, Zhang R, D’Alessio DA, Stern JE, Herman JP (2008b) Distribution of glucagon-like peptide-1 immunoreactivity in the hypothalamic paraventricular and supraoptic nuclei. J Chem Neuroanat 36(3–4):144–149. doi:10.1016/j.jchemneu.2008.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Toth ZE, Zelena D, Mergl Z, Kirilly E, Varnai P, Mezey E, Makara GB, Palkovits M (2008) Chronic repeated restraint stress increases prolactin-releasing peptide/tyrosine-hydroxylase ratio with gender-related differences in the rat brain. J Neurochem 104(3):653–666. doi:10.1111/j.1471-4159.2007.05069.x

    CAS  PubMed  Google Scholar 

  • Toufexis DJ, Thrivikraman KV, Plotsky PM, Morilak DA, Huang N, Walker CD (1998) Reduced noradrenergic tone to the hypothalamic paraventricular nucleus contributes to the stress hyporesponsiveness of lactation. J Neuroendocrinol 10(6):417–427

    Article  CAS  PubMed  Google Scholar 

  • Uchida K, Kobayashi D, Das G, Onaka T, Inoue K, Itoi K (2010) Participation of the prolactin-releasing peptide-containing neurones in caudal medulla in conveying haemorrhagic stress-induced signals to the paraventricular nucleus of the hypothalamus. J Neuroendocrinol 22(1):33–42. doi:10.1111/j.1365-2826.2009.01935.x

    Article  CAS  PubMed  Google Scholar 

  • Ulrich-Lai YM, Herman JP (2009) Neural regulation of endocrine and autonomic stress responses. Nat Rev Neurosci 10(6):397–409. doi:10.1038/nrn2647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ulrich-Lai YM, Arnhold MM, Engeland WC (2006a) Adrenal splanchnic innervation contributes to the diurnal rhythm of plasma corticosterone in rats by modulating adrenal sensitivity to ACTH. Am J Physiol Regul Integr Comp Physiol 290(4):R1128–R1135. doi:10.1152/ajpregu.00042.2003

    Article  CAS  PubMed  Google Scholar 

  • Ulrich-Lai YM, Figueiredo HF, Ostrander MM, Choi DC, Engeland WC, Herman JP (2006b) Chronic stress induces adrenal hyperplasia and hypertrophy in a subregion-specific manner. Am J Physiol Endocrinol Metab 291(5):E965–E973. doi:10.1152/ajpendo.00070.2006

    Article  CAS  PubMed  Google Scholar 

  • van der Kooy D, Koda LY, McGinty JF, Gerfen CR, Bloom FE (1984) The organization of projections from the cortex, amygdala, and hypothalamus to the nucleus of the solitary tract in rat. J Comp Neurol 224(1):1–24. doi:10.1002/cne.902240102

    Article  PubMed  Google Scholar 

  • Watanabe Y, McKittrick CR, Blanchard DC, Blanchard RJ, McEwen BS, Sakai RR (1995) Effects of chronic social stress on tyrosine hydroxylase mRNA and protein levels. Brain Res Mol Brain Res 32(1):176–180

    Article  CAS  PubMed  Google Scholar 

  • Yoshida N, Maejima Y, Sedbazar U, Ando A, Kurita H, Damdindorj B, Takano E, Gantulga D, Iwasaki Y, Kurashina T, Onaka T, Dezaki K, Nakata M, Mori M, Yada T (2010) Stressor-responsive central nesfatin-1 activates corticotropin-releasing hormone, noradrenaline and serotonin neurons and evokes hypothalamic-pituitary-adrenal axis. Aging (Albany NY) 2(11):775–784. doi:10.18632/aging.100207

    Article  CAS  Google Scholar 

  • Yu G, Sharp BM (2010) Nicotine self-administration diminishes stress-induced norepinephrine secretion but augments adrenergic-responsiveness in the hypothalamic paraventricular nucleus and enhances adrenocorticotropic hormone and corticosterone release. J Neurochem 112(5):1327–1337. doi:10.1111/j.1471-4159.2009.06551.x

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Packard BA, Tauchi M, D’Alessio DA, Herman JP (2009) Glucocorticoid regulation of preproglucagon transcription and RNA stability during stress. Proc Natl Acad Sci USA 106(14):5913–5918. doi:10.1073/pnas.0808716106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang R, Jankord R, Flak JN, Solomon MB, D’Alessio DA, Herman JP (2010) Role of glucocorticoids in tuning hindbrain stress integration. J Neurosci 30(44):14907–14914. doi:10.1523/JNEUROSCI.0522-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng H, Stornetta RL, Agassandian K, Rinaman L (2015) Glutamatergic phenotype of glucagon-like peptide 1 neurons in the caudal nucleus of the solitary tract in rats. Brain Struct Funct 220(5):3011–3022. doi:10.1007/s00429-014-0841-6

    Article  CAS  PubMed  Google Scholar 

  • Ziegler DR, Herman JP (2000) Local integration of glutamate signaling in the hypothalamic paraventricular region: regulation of glucocorticoid stress responses. Endocrinology 141(12):4801–4804. doi:10.1210/endo.141.12.7949

    Article  CAS  PubMed  Google Scholar 

  • Ziegler DR, Edwards MR, Ulrich-Lai YM, Herman JP, Cullinan WE (2012) Brainstem origins of glutamatergic innervation of the rat hypothalamic paraventricular nucleus. J Comp Neurol 520(11):2369–2394. doi:10.1002/cne.23043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

I am grateful for the inspiration provided by my friend and colleague Richard Kvetnansky, both for the studies contributing to this review and for my career in general. He was a major force in the stress field, and his leadership and support will be sorely missed. In addition, I would like to acknowledge all of the trainees and staff that have contributed to these studies, initiated at the University of Kentucky and continued on at the University of Cincinnati. Work on these studies was supported by MH049698 and MH069860.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James P. Herman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Herman, J.P. Regulation of Hypothalamo-Pituitary-Adrenocortical Responses to Stressors by the Nucleus of the Solitary Tract/Dorsal Vagal Complex. Cell Mol Neurobiol 38, 25–35 (2018). https://doi.org/10.1007/s10571-017-0543-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10571-017-0543-8

Keywords

Navigation