Skip to main content
Log in

Condensin: Architect of mitotic chromosomes

  • Published:
Chromosome Research Aims and scope Submit manuscript

Abstract

Condensin is a highly conserved pentameric complex consisting of two structural maintenance of chromosome (SMC) ATPase subunits and three auxiliary components. While initially regarded as a key driver of mitotic chromosome condensation, condensin is increasingly viewed as having a more subtle influence on chromosome architecture. The two condensin complexes are required to direct the correct folding and organization of chromosomes prior to anaphase and for keeping the chromosomes compact as they separate to the poles. This ancient complex is essential in mitosis and meiosis and has additional roles in gene regulation and DNA repair. The wide variety of biochemical and genetic tools available are gradually unravelling the numerous roles condensin plays during the cell cycle and shedding light on its mechanism of action.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

CAP:

chromosome-associated protein

Cdc2:

cell division cycle (kinase) 2

CDK:

cyclin-dependent kinase

CK2:

casein kinase 2

HEAT:

Huntingtin, elongation factor 3, the A subunit of protein phosphatase 2A, TOR lipid kinase

NEBD:

nuclear envelope breakdown

RCA:

regulator of chromosome architecture

SMC:

structural maintenance of chromosome

References

  • Adams RR, Maiato H, Earnshaw WC, Carmena M (2001) Essential roles of Drosophila inner centromere protein (INCENP) and aurora B in histone H3 phosphorylation, metaphase chromosome alignment, kinetochore disjunction, and chromosome segregation. J Cell Biol 153:865–880

    Article  PubMed  CAS  Google Scholar 

  • Adolph KW, Cheng SM, Laemmli UK (1977) Role of nonhistone proteins in metaphase chromosome structure. Cell 12:805–816

    Article  PubMed  CAS  Google Scholar 

  • Anderson DE, Losada A, Erickson HP, Hirano T (2002) Condensin and cohesin display different arm conformations with characteristic hinge angles. J Cell Biol 156:419–424

    Article  PubMed  CAS  Google Scholar 

  • Arumugam P, Gruber S, Tanaka K, Haering CH, Mechtler K, Nasmyth K (2003) ATP hydrolysis is required for cohesin's association with chromosomes. Curr Biol 13:1941–1953

    Article  PubMed  CAS  Google Scholar 

  • Arumugam P, Nishino T, Haering CH, Gruber S, Nasmyth K (2006) Cohesin's ATPase activity is stimulated by the C-terminal Winged-Helix domain of its kleisin subunit. Curr Biol 16:1998–2008

    Article  PubMed  CAS  Google Scholar 

  • Bazett-Jones DP, Kimura K, Hirano T (2002) Efficient supercoiling of DNA by a single condensin complex as revealed by electron spectroscopic imaging. Mol Cell 9:1183–1190

    Article  PubMed  CAS  Google Scholar 

  • Belmont AS (2006) Mitotic chromosome structure and condensation. Curr Opin Cell Biol 18:632–638

    Article  PubMed  CAS  Google Scholar 

  • Chuang PT, Albertson DG, Meyer BJ (1994) DPY-27: a chromosome condensation protein homolog that regulates C. elegans dosage compensation through association with the X chromosome. Cell 79:459–474

    Article  PubMed  CAS  Google Scholar 

  • Cobbe N, Heck MM (2004) The evolution of SMC proteins: phylogenetic analysis and structural implications. Mol Biol Evol 21:332–347

    Article  PubMed  CAS  Google Scholar 

  • Csankovszki G, Collete K, Spahl K (2009) Three distinct condensin complexes control C. elegans chromosome dynamics. Curr Biol 19:9–19

    Google Scholar 

  • D’Ambrosio C, Schmidt CK, Katou Y et al (2008) Identification of cis-acting sites for condensin loading onto budding yeast chromosomes. Genes Dev 22:2215–2227

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw WC, Laemmli UK (1983) Architecture of metaphase chromosomes and chromosome scaffolds. J Cell Biol 96:84–93

    Article  PubMed  CAS  Google Scholar 

  • Earnshaw WC, Halligan B, Cooke CA, Heck MM, Liu LF (1985) Topoisomerase II is a structural component of mitotic chromosome scaffolds. J Cell Biol 100:1706–1715

    Article  PubMed  CAS  Google Scholar 

  • Eide T, Carlson C, Taskén KA, Hirano T, Taskén K, Collas P (2002) Distinct but overlapping domains of AKAP95 are implicated in chromosome condensation and condensin targeting. EMBO Rep 3:426–432

    Article  PubMed  CAS  Google Scholar 

  • Ercan S, Lieb L (2009) Regulation of transcription by a condensin-like complex to achieve dosage compensation. Chromosome Res (this issue)

  • Gasser SM, Laroche T, Falquet J, Boy de la Tour E, Laemmli UK (1986) Metaphase chromosome structure. Involvement of topoisomerase II. J Mol Biol 188:613–629

    Article  PubMed  CAS  Google Scholar 

  • Gerlich D, Hirota T, Koch B, Peters JM, Ellenberg J (2006) Condensin I stabilizes chromosomes mechanically through a dynamic interaction in live cells. Curr Biol 16:333–344

    Article  PubMed  CAS  Google Scholar 

  • Giet R, Glover DM (2001) Drosophila aurora B kinase is required for histone H3 phosphorylation and condensin recruitment during chromosome condensation and to organize the central spindle during cytokinesis. J Cell Biol 152:669–682

    Article  PubMed  CAS  Google Scholar 

  • Graumann P, Knust T (2009) Dynamics and function of the SMC/MukB complex in bacteria. Chromosome Res

  • Gruber S, Haering CH, Nasmyth K (2003) Chromosomal cohesin forms a ring. Cell 112:765–777

    Article  PubMed  CAS  Google Scholar 

  • Gruber S, Arumugam P, Katou Y et al (2006) Evidence that loading of cohesin onto chromosomes involves opening of its SMC hinge. Cell 127:523–537

    Article  PubMed  CAS  Google Scholar 

  • Haering CH, Löwe J, Hochwagen A, Nasmyth K (2002) Molecular architecture of SMC proteins and the yeast cohesin complex. Mol Cell 9:773–788

    Article  PubMed  CAS  Google Scholar 

  • Haering CH, Schoffnegger D, Nishino T, Helmhart W, Nasmyth K, Löwe J (2004) Structure and stability of cohesin’s Smc1-kleisin interaction. Mol Cell 15:951–964

    Article  PubMed  CAS  Google Scholar 

  • Haering CH, Farcas AM, Arumugam P, Metson J, Nasmyth K (2008) The cohesin ring concatenates sister DNA molecules. Nature 454:297–301

    Article  PubMed  CAS  Google Scholar 

  • Hagstrom KA, Holmes VF, Cozzarelli NR, Meyer BJ (2002) C. elegans condensin promotes mitotic chromosome architecture, centromere organization, and sister chromatid segregation during mitosis and meiosis. Genes Dev 16:729–742

    Article  PubMed  CAS  Google Scholar 

  • Hirano T (2005) Condensins: organizing and segregating the genome. Curr Biol 15:R265–R275

    Article  PubMed  CAS  Google Scholar 

  • Hirano T (2006) At the heart of the chromosome: SMC proteins in action. Nat Rev Mol Cell Biol 7:311–322

    Article  PubMed  CAS  Google Scholar 

  • Hirano M, Hirano T (2006) Opening closed arms: long-distance activation of SMC ATPase by hinge-DNA interaction. Mol Cell 21:175–186

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Mitchison TJ (1994) A heterodimeric coiled-coil protein required for mitotic chromosome condensation in vitro. Cell 79:449–458

    Article  PubMed  CAS  Google Scholar 

  • Hirano T, Funahashi SI, Uemura T, Yanagida M (1986) Isolation and characterization of Schizosaccharomyces pombe cut mutants that block nuclear division but not cytokinesis. EMBO J 5:2973–2979

    PubMed  CAS  Google Scholar 

  • Hirano T, Kobayashi R, Hirano M (1997) Condensins, chromosome condensation protein complexes containing XCAP-C, XCAP-E and a Xenopus homolog of the Drosophila Barren protein. Cell 89:511–521

    Article  PubMed  CAS  Google Scholar 

  • Hirano M, Anderson DE, Erickson HP, Hirano T (2001) Bimodal activation of SMC ATPase by intra- and inter-molecular interactions. EMBO J 20:3238–3250

    Article  PubMed  CAS  Google Scholar 

  • Hirota T, Gerlich D, Koch B, Ellenberg J, Peters JM (2004) Distinct functions of condensin I and II in mitotic chromosome assembly. J Cell Sci 117:6435–6445

    Article  PubMed  CAS  Google Scholar 

  • Hopfner KP, Karcher A, Craig L, Woo TT, Carney JP, Tainer JA (2001) Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell 105:473–485

    Article  PubMed  CAS  Google Scholar 

  • Hudson DF, Vagnarelli P, Gassmann R, Earnshaw WC (2003) Condensin is required for nonhistone protein assembly and structural integrity of vertebrate mitotic chromosomes. Dev Cell 5:323–336

    Article  PubMed  CAS  Google Scholar 

  • Hudson DF, Ohta S, Freisinger T et al (2008) Molecular and genetic analysis of condensin function in vertebrate cells. Mol Biol Cell 19:3070–3079

    Article  PubMed  CAS  Google Scholar 

  • Kaitna S, Pasierbek P, Jantsch M, Loidl J, Glotzer M (2002) The aurora B kinase AIR-2 regulates kinetochores during mitosis and is required for separation of homologous chromosomes during meiosis. Curr Biol 12:798–812

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Hirano T (2000) Dual roles of the 11S regulatory subcomplex in condensin functions. Proc Natl Acad Sci USA 97:11972–11977

    Article  PubMed  CAS  Google Scholar 

  • Kimura K, Rybenkov VV, Crisona NJ, Hirano T, Cozzarelli NR (1999) 13S condensin actively reconfigures DNA by introducing global positive writhe: implications for chromosome condensation. Cell 98:239–248

    Article  PubMed  CAS  Google Scholar 

  • Koshland D, Strunnikov A (1996) Mitotic chromosome condensation. Annu Rev Cell Dev Biol 12:305–333

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK, Käs E, Poljak L, Adachi Y (1992) Scaffold-associated regions: cis-acting determinants of chromatin structural loops and functional domains. Curr Opin Genet Dev 2:275–285

    Article  PubMed  CAS  Google Scholar 

  • Lavoie BD, Hogan E, Koshland D (2004) In vivo requirements for rDNA chromosome condensation reveal two cell-cycle-regulated pathways for mitotic chromosome folding. Genes Dev 18:76–87

    Article  PubMed  CAS  Google Scholar 

  • Lewis CD, Laemmli UK (1982) Higher order metaphase chromosome structure: evidence for metalloprotein interactions. Cell 29:171–181

    Article  PubMed  CAS  Google Scholar 

  • Lipp JJ, Hirota T, Poser I, Peters JM (2007) Aurora B controls the association of condensin I but not condensin II with mitotic chromosomes. J Cell Sci 120:1245–1255

    Article  PubMed  CAS  Google Scholar 

  • Longworth MS, Herr A, Ji JY, Dyson NJ (2008) RBF1 promotes chromatin condensation through a conserved interaction with the condensin II protein dCAP-D3. Genes Dev 22:1011–1024

    Article  PubMed  CAS  Google Scholar 

  • Maeshima K, Laemmli UK (2003) A two-step scaffolding model for mitotic chromosome assembly. Dev Cell 4:467–480

    Article  PubMed  CAS  Google Scholar 

  • Melby TE, Ciampaglio CN, Briscoe G, Erickson HP (1998) The symmetrical structure of structural maintenance of chromosomes (SMC) and MukB proteins: long, antiparallel coiled coils, folded at a flexible hinge. J Cell Biol 142:1595–1604

    Article  PubMed  CAS  Google Scholar 

  • Murnion ME, Adams RR, Callister DM, Allis CD, Earnshaw WC, Swedlow JR (2001) Chromatin-associated protein phosphatase 1 regulates aurora-B and histone H3 phosphorylation. J Biol Chem 276:26656–26665

    Article  PubMed  CAS  Google Scholar 

  • Nakazawa N, Nakamura T, Kokubu A, Ebe M, Nagao K, Yanagida M (2008) Dissection of the essential steps for condensin accumulation at kinetochores and rDNAs during fission yeast mitosis. J Cell Biol 180:1115–1131

    Article  PubMed  CAS  Google Scholar 

  • Nasmyth K, Haering CH (2005) The structure and function of SMC and kleisin complexes. Annu Rev Biochem 74:595–648

    Article  PubMed  CAS  Google Scholar 

  • Oliveira RA, Coelho PA, Sunkel CE (2005) The condensin I subunit Barren/CAP-H is essential for the structural integrity of centromeric heterochromatin during mitosis. Mol Cell Biol 25:8971–8984

    Article  PubMed  CAS  Google Scholar 

  • Onn I, Aono N, Hirano M, Hirano T (2007) Reconstitution and subunit geometry of human condensin complexes. EMBO J 26:1024–1034

    Article  PubMed  CAS  Google Scholar 

  • Ono T, Losada A, Hirano M, Myers MP, Neuwald AF, Hirano T (2003) Differential contributions of condensin I and condensin II to mitotic chromosome architecture in vertebrate cells. Cell 115:109–121

    Article  PubMed  CAS  Google Scholar 

  • Ono T, Fang Y, Spector DL, Hirano T (2004) Spatial and temporal regulation of condensins I and II in mitotic chromosome assembly in human cells. Mol Biol Cell 15:3296–3308

    Article  PubMed  CAS  Google Scholar 

  • Parelho V, Hadjur S, Spivakov M et al (2008) Cohesins functionally associate with CTCF on mammalian chromosome arms. Cell 132:422–433

    Article  PubMed  CAS  Google Scholar 

  • Paulson JR, Laemmli UK (1977) The structure of histone-depleted metaphase chromosomes. Cell 12:817–828

    Article  PubMed  CAS  Google Scholar 

  • Poirier MG, Marko JF (2002) Mitotic chromosomes are chromatin networks without a mechanically contiguous protein scaffold. Proc Natl Acad Sci USA 99:15393–15397

    Article  PubMed  CAS  Google Scholar 

  • Ribeiro S, Gatlin JC, Dong Y et al (2008) Condensin regulates the stiffness of vertebrates centromeres. Submitted

  • Saitoh N, Goldberg IG, Wood ER, Earnshaw WC (1994) ScII: an abundant chromosome scaffold protein is a member of a family of putative ATPases with an unusual predicted tertiary structure. J Cell Biol 127:303–318

    Article  PubMed  CAS  Google Scholar 

  • Saitoh N, Goldberg I, Earnshaw WC (1995) The SMC proteins and the coming of age of the chromosome scaffold hypothesis. Bioessays 17:759–766

    Article  PubMed  CAS  Google Scholar 

  • Schleiffer A, Kaitna S, Maurer-Stroh S, Glotzer M, Nasmyth K, Eisenhaber F (2003) Kleisins: a superfamily of bacterial and eukaryotic SMC protein partners. Mol Cell 11:571–575

    Article  PubMed  CAS  Google Scholar 

  • Stray JE, Lindsley JE (2003) Biochemical analysis of the yeast condensin Smc2/4 complex: an ATPase that promotes knotting of circular DNA. J Biol Chem 278:26238–26248

    Article  PubMed  CAS  Google Scholar 

  • Strunnikov AV, Hogan E, Koshland D (1995) SMC2, a Saccharomyces cerevisiae gene essential for chromosome segregation and condensation, defines a subgroup within the SMC family. Genes Dev 9:587–599

    Article  PubMed  CAS  Google Scholar 

  • Surcel A, Koshland D, Ma H, Simpson RT (2008) Cohesin interaction with centromeric minichromosomes shows a multi-complex rod-shaped structure. PLoS ONE 3:e2453

    Article  PubMed  Google Scholar 

  • Takemoto A, Kimura K, Yokoyama S, Hanaoka F (2004) Cell cycle-dependent phosphorylation, nuclear localization, and activation of human condensin. J Biol Chem 279:4551–4559

    Article  PubMed  CAS  Google Scholar 

  • Takemoto A, Kimura K, Yanagisawa J, Yokoyama S, Hanaoka F (2006) Negative regulation of condensin I by CK2-mediated phosphorylation. EMBO J 25:5339–5348

    Article  PubMed  CAS  Google Scholar 

  • Trinkle-Mulcahy L, Andersen J, Lam YW, Moorhead G, Mann M, Lamond AI (2006) Repo-Man recruits PP1 gamma to chromatin and is essential for cell viability. J Cell Biol 172:679–692

    Article  PubMed  CAS  Google Scholar 

  • Vagnarelli P, Hudson DF, Ribeiro SA et al (2006) Condensin and Repo-Man-PP1 co-operate in the regulation of chromosome architecture during mitosis. Nat Cell Biol 8:1133–1142

    Article  PubMed  CAS  Google Scholar 

  • Volkov A, Mascarenhas J, Andrei-Selmer C, Ulrich HD, Graumann PL (2003) A prokaryotic condensin/cohesin-like complex can actively compact chromosomes from a single position on the nucleoid and binds to DNA as a ring-like structure. Mol Cell Biol 23:5638–5650

    Article  PubMed  CAS  Google Scholar 

  • Wang BD, Eyre D, Basrai M, Lichten M, Strunnikov A (2005) Condensin binding at distinct and specific chromosomal sites in the Saccharomyces cerevisiae genome. Mol Cell Biol 25:7216–7225

    Article  PubMed  CAS  Google Scholar 

  • Weitzer S, Lehane C, Uhlmann F (2003) A model for ATP hydrolysis-dependent binding of cohesin to DNA. Curr Biol 13:1930–1940

    Article  PubMed  CAS  Google Scholar 

  • Wendt KS, Yoshida K, Itoh T et al (2008) Cohesin mediates transcriptional insulation by CCCTC-binding factor. Nature 451:796–801

    Article  PubMed  CAS  Google Scholar 

  • Yeong FM, Hombauer H, Wendt KS et al (2003) Identification of a subunit of a novel Kleisin-beta/SMC complex as a potential substrate of protein phosphatase 2A. Curr Biol 13:2058–2064

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura SH, Hizume K, Murakami A, Sutani T, Takeyasu K, Yanagida M (2002) Condensin architecture and interaction with DNA: regulatory non-SMC subunits bind to the head of SMC heterodimer. Curr Biol 12:508–513

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work was supported by the Wellcome Trust (United Kingdom) and NHMRC (Australia). W.C.E is a Principal Research Fellow of the Wellcome Trust and D.H. is supported by a NHMRC project grant (ID: 491204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Damien F. Hudson or William C. Earnshaw.

Additional information

Responsible Editor: Christian Haering.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hudson, D.F., Marshall, K.M. & Earnshaw, W.C. Condensin: Architect of mitotic chromosomes. Chromosome Res 17, 131–144 (2009). https://doi.org/10.1007/s10577-008-9009-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10577-008-9009-7

Keywords

Navigation