Skip to main content

Advertisement

Log in

Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways

  • Published:
Climatic Change Aims and scope Submit manuscript

Abstract

In this paper, we discuss the results of 2000–2100 simulations following the emissions associated with the Representative Concentration Pathways (RCPs) with a chemistry-climate model, focusing on the changes in 1) atmospheric composition (troposphere and stratosphere) and 2) associated environmental parameters (such as nitrogen deposition). In particular, we find that tropospheric ozone is projected to decrease (RCP2.6, RCP4.5 and RCP6) or increase (RCP8.5) between 2000 and 2100, with variations in methane a strong contributor to this spread. The associated tropospheric ozone global radiative forcing is shown to be in agreement with the estimate used in the RCPs, except for RCP8.5. Surface ozone in 2100 is projected to change little compared from its 2000 distribution, a much-reduced impact from previous projections based on the A2 high-emission scenario. In addition, globally-averaged stratospheric ozone is projected to recover at or beyond pre-1980 levels. Anthropogenic aerosols are projected to strongly decrease in the 21st century, a reflection of their projected decrease in emissions. Consequently, sulfate deposition is projected to strongly decrease. However, nitrogen deposition is projected to increase over certain regions because of the projected increase in NH3 emissions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adams P, Seinfeld J, Koch D, Mickley L, Jacob D (2001) General circulation model assessment of direct radiative forcing by the sulfate–nitrate–ammonium–water inorganic aerosol system. J Geophys Res 106:1097–1111

    Article  Google Scholar 

  • Anenberg SC, West JJ, Fiore AM, Jaffe DA, Prather MJ, Bergmann D, Cuvelier C, Dentener FJ, Duncan BN, Gauss M, Hess P, Jonson JE, Lupu A, MacKenzie IA, Marmer E, Park RJ, Sanderson M, Schultz M, Shindell DT, Szopa S, Garcia Vivanco M, Wild O, Zeng G (2009) Intercontinenal impacts of ozone pollution on human mortality. Environ Sci Tech 43(17):6482–6487

    Article  Google Scholar 

  • Austin J, Struthers H, Scinocca J, Plummer D, Akiyoshi H, Baumgaertner AJG, Bekki S, Bodeker GE, Braesicke P, Bruhl C, Butchart N, Chipperfield M, Cugnet D, Dameris M, Dhomse S, Frith S, Garny H, Gettelman A, Hardiman S, Jockel P, Kinnison D, Lamarque J-F, Marchand M, Michou M, Morgenstern O, Nakamura T, Nielsen JE, Pitari G, Pyle J, Shepherd TG, Shibata K, Smale D, Stolarski R, Teyssedre H, Yamashita Y (2010) Chemistry climate model simulations of the Antarctic ozone hole. J Geophys Res, 115, D00M11, doi:10.1029/2009JD013577

  • Barth M, Rasch PJ, Kiehl JT, Benkovitz CM, Schwartz SE (2000) Sulfur chemistry in the NCAR CCM: description, evaluation, features and sensitivity to aqueous chemistry. J Geophys Res 105:1387–1415

    Article  Google Scholar 

  • Billen G, Beusen A, Bouwman L, Garnier J (2010) Anthropogenic nitrogen autotrophy and heterotrophy of the world’s watersheds: Past, present, and future trends, Global Biogeochem Cycles 24, GB0A11, doi:10.1029/2009GB003702.

  • Bobbink R, Hornung M, Roelofs JM (1998) The effects of airborne pollutants on species diversity in natural and semi-natural European vegetation. J Ecol 86:717–738. doi:10.1029/2002JD002272

    Article  Google Scholar 

  • Bond TC, Zarzycki C, Flanner MG, Koch DM (2010) Quantifying immediate radiative forcing by black carbon and organic matter with the Specific Forcing Pulse. Atmos Chem Phys Discuss 10:15713–15753

    Article  Google Scholar 

  • Bouwman AF, Van Vuuren DP, Derwent RG, Posch M (2002) A global analysis of acidification and eutrophication of terrestrial ecosystems. Water Air Soil Pollut 141:349–382

    Article  Google Scholar 

  • Butchart N et al (2006) Simulations of the anthropogenic change in the strength of the Brewer-Dobson circulation. Clim Dyn 27:727–741. doi:10.1007/s00382-006-0162-4

    Article  Google Scholar 

  • Butchart SHM et al (2010) Did we meet the 2010 biodiversity target? A synthesis of global indicators. Science 328(5982):1164–1168. doi:10.1126/science.1187512

    Article  Google Scholar 

  • Chung SH, Seinfeld JH (2005) Climate response of direct radiative forcing of anthropogenic black carbon. J Geophys Res 110:D11102. doi:10.1029/2004JD005441

    Article  Google Scholar 

  • Chung CE, Ramanathan V, Kim D, Podgorny IA (2005) Global anthropogenic aerosol direct forcing derived from satellite and ground-based observations. J Geophys Res 110:D24207. doi:10.1029/2005JD006356

    Article  Google Scholar 

  • Collins WD, Rasch PJ, Eaton BE, Fillmore DW, Kiehl JT, Beck CT, Zender CS (2002) Simulation of aerosol distributions and radiative forcing for INDOEX: Regional climate impacts, J Geophys Res, 107(D19), 8028, doi:10.1029/2000JD000032

  • Cooke WF, Liousse C, Cachier H, Feichter J (1999) Construction of a 1 degrees x 1 degrees fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model, J Geophys Res 104, 22, 137–22, 162

    Google Scholar 

  • Dentener F et al (2006a) Nitrogen and Sulphur Deposition on regional and global scales: a multi-model evaluation, Global Biogeochem. Cycles, 20, GB4003, doi:10.1029/2005GB002672

  • Dentener F, Kinne S, Bond T, Boucher O, Cofala J, Generoso S, Ginoux P, Gong S, Hoelzemann JJ, Ito A, Marelli L, Penner JE, Putaud J-P, Textor C, Schulz M, van der Werf GR, Wilson J (2006b) Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom. Atmos Chem Phys 6:4321–4344

    Article  Google Scholar 

  • Eyring V et al (2010a) Sensitivity of 21st century stratospheric ozone to greenhouse gas scenarios. Geophys Res Lett 37:L16807. doi:10.1029/2010GL044443

    Article  Google Scholar 

  • Eyring V et al (2010b) Multi-model assessment of ozone return dates and ozone recovery in CCMVal-2 models. Atmos Chem Phys 10:9451–9472. doi:10.5194/acp-10-9451-2010

    Article  Google Scholar 

  • Fiore AM et al (2002) Linking ozone air pollution and climate change: the case for controlling methane. Geophys Res Lett 29:1919. doi:10.1029/2002GL015601

    Article  Google Scholar 

  • Fiore AM et al (2009) Multi-model estimates of intercontinental source-receptor relationships for ozone pollution. J Geophys Res 114:D04301. doi:10.1029/2008jd010816

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Berntsen T, Betts R, Fahey DW, Haywood J, Lean J, Lowe DC, Myhre G, Nganga J, Prinn R, Raga G, Schulz M, Van Dorland R (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Galloway JN et al (2008) Transformation of the nitrogen cycle: recent trends, Questions, and Potential Solutions. Science 320:889. doi:10.1126/science.1136674

    Article  Google Scholar 

  • Garcia RR, Marsh DR, Kinnison DE, Boville BA, Sassi F (2007) Simulation of secular trends in the middle atmosphere, 1950–2003. J Geophys Res 112. doi:10.1029/2006JD007485

  • Gauss M et al (2006) Radiative forcing since preindustrial times due to ozone change in the troposphere and the lower stratosphere. Atmos Chem Phys 6:575–599

    Article  Google Scholar 

  • Gent PR, Yeager SG, Neale RB, Levis S, Bailey DA (2009) Improvements in a half degree atmosphere/land version of the CCSM. Clim Dynam 79:25–58. doi:10.1007/s00382-009-0614-8

    Google Scholar 

  • Granier C, Bessagnet B, Bond T, D’Angiola A, van der Gon HG, Frost G, Heil A, Kainuma M, Kaiser J, Kinne S et al (2011) Evolution of anthropogenic and biomass burning emissions at global and regional scales during the 1980–2010 period. Climatic Change (this issue). doi:10.1007/s10584-011-0154-1

  • Guenther A, Karl T, Harley P, Wiedinmyer C, Palmer PI, Geron C (2006) Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature). Atmos Chem Phys 6:3181–3210

    Article  Google Scholar 

  • Hegglin MA, Shepherd TG (2009) Large climate-induced changes in ultraviolet index and stratosphere-to-troposphere ozone flux. Nat Geosci 2:687–691. doi:10.1038/ngeo604

    Article  Google Scholar 

  • Holland EA et al (1997) Variations in the predicted spatial distribution of atmospheric nitrogen deposition and their impact on carbon uptake by terrestrial ecosystems, J Geophys Res, 102, 15,849-15,866

  • Holland EA, Braswell BH, Sulzman J, Lamarque J-F (2005) Nitrogen deposition onto the United States and Western Europe: synthesis of observations and models. Ecol Appl 15(1):38–57

    Article  Google Scholar 

  • Houweling S, Dentener F, Lelieveld J (2005) The impact of non-methane hydrocarbon compounds on tropospheric photochemistry. J Geophys Res 103, 10,673–10,696, doi:10.1029/97JD03582

  • Jacobson MZ (2000) A physically-based treatment of elemental carbon optics: implications for global direct forcing of aerosols. Geophys Res Lett 27:217–220

    Article  Google Scholar 

  • Jacobson MZ (2001) Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409:695–697. doi:10.1038/35055518

    Article  Google Scholar 

  • Jacobson MZ (2010) Short-term effects of controlling fossil fuel soot, biofuel soot and gases, and methane on climate, Arctic ice, and air pollution health. J Geophys Res 115:D14209. doi:10.1029/2009JD013795

    Article  Google Scholar 

  • Jonson JE, Stohl A, Fiore AM, Hess P, Szopa S, Wild O, Zeng G, Dentener FJ, Lupu A, Schultz MG, Duncan BN, Sudo K, Wind P, Schulz M, Marmer E, Cuvelier C, Keating T, Zuber A, Valdebenito A, Dorokhov V, De Backer H, Davies J, Chen GH, Johnson B, Tarasick DW (2010) A multi-model analysis of vertical ozone profiles. Atmos Chem Phys 10:5759–5783

    Article  Google Scholar 

  • Kinnison DE, Brasseur GP, Walters S et al (2007) Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model. J Geophys Res 112:D20302. doi:10.1029/2006JD007879

    Article  Google Scholar 

  • Koch D et al (2009) Evaluation of black carbon estimations in global aerosol models. Atmos Chem Phys 9:9001–9026

    Article  Google Scholar 

  • Lacis AA, Wuebbles DJ, Logan JA (1990) Radiative forcing of climate by changes in the vertical distribution of ozone. J Geophys Res 95:9971–9981

    Article  Google Scholar 

  • Lamarque J-F, Solomon S (2010) Impact of changes in climate and halocarbons on recent lower stratosphere ozone and temperature trends. J Clim 23:2599–2611. doi:10.1175/2010JCLI3179.1

    Article  Google Scholar 

  • Lamarque J-F, Kiehl JT, Hess PG, Collins WD, Emmons LK, Ginoux P, Luo C, Tie XX (2005a) Response of a coupled chemistry-climate model to changes in aerosol emissions: Global impact on the hydrological cycle and the tropospheric burdens of OH, ozone and NOx. Geophys Res Lett 32(16):L16809

    Article  Google Scholar 

  • Lamarque J-F, Kiehl J, Brasseur G, Butler T, Cameron-Smith P, Collins WD, Collins WJ, Granier C, Hauglustaine D, Hess P, Holland E, Horowitz L, Lawrence M, McKenna D, Merilees P, Prather M, Rasch P, Rotman D, Shindell D, Thornton P (2005b) Assessing future nitrogen deposition and carbon cycle feedback using a multi-model approach. Analysis of nitrogen deposition. J Geophys Res 110:D19303. doi:10.1029/2005JD005825

    Article  Google Scholar 

  • Lamarque J-F, Kinnison DE, Hess PG, Vitt F (2008) Simulated lower stratospheric trends between 1970 and 2005: identifying the role of climate and composition changes. J Geophys Res 113:D12301. doi:10.1029/2007JD009277

    Article  Google Scholar 

  • Lamarque J-F, Bond TC, Eyring V, Granier C, Heil A, Klimont Z, Lee D, Liousse C, Mieville A, Owen B, Schultz MG, Shindell D, Smith SJ, Stehfest E, Van Aardenne J, Cooper OR, Kainuma M, Mahowald N, McConnell JR, Naik V, Riahi K, van Vuuren DP (2010) Historical (1850-2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: methodology and application. Atmos Chem Phys 10. doi:10.5194/acp-10-7017-2010, 7017-7039

  • Lathière J, Hauglustaine DA, Friend AD, De Noblet-Ducoudré N, Viovy N, Folberth GA (2006) Impact of climate variability and land use changes on global biogenic volatile organic compound emissions. Atmos Chem Phys 6:2129–2146

    Article  Google Scholar 

  • Liao H, Adams PJ, Ching SH et al (2003) Interactions between tropospheric chemistry and aerosols in a unified general circulation model, J Geophys Res 108(D1), 4001, doi:10.1029/2001JD001260

  • Mahowald N, Muhs DR, Levis S et al (2006a) Change in atmospheric mineral aerosols in response to climate: last glacial period, pre-industrial, modern and doubled-carbon dioxide climates. J Geophys Res 111:D10202. doi:10210.11029/12005JD006653

    Article  Google Scholar 

  • Mahowald N, Lamarque J-F, Tie XX, Wolff E (2006b) Sea salt aerosol response to climate change: last glacial maximum, pre-industrial, and doubled-carbon dioxide climates. J Geophys Res 111:D05303. doi:10.1029/2005JD006459

    Article  Google Scholar 

  • Malm WC, Schichtel BA, Pitchford ML, Ashbaugh LL, Eldred RA (2004) Spatial and monthly trends in speciated fine particle concentration in the United States. J Geophys Res 109. doi:10.1029/2003JD003739

  • Masui T, Matsumoto K, Hijioka Y, Kinoshita T, Nozawa T, Ishiwatari S, Kato E, Shukla PR, Yamagata Y, Kainuma M (2011) A emission pathway to stabilize at 6 W/m2 of radiative forcing (this issue). doi:10.1007/s10584-011-0150-5

  • Meehl GA, Stocker TF, Collins WD, Friedlingstein P, Gaye AT, Gregory JM, Kitoh A, Knutti R, Murphy JM, Noda A, Raper SCB, Watterson IG, Weaver AJ, Zhao Z-C (2007) Global Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge

    Google Scholar 

  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque J-F, Matsumoto K, Montzka SA, Raper S, Riahi K et al (2011) The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Climatic Change (this issue). doi:10.1007/s10584-011-0156-z

  • Metzger S, Dentener F, Pandis S, Lelieveld J (2002) Gas/aerosol partitioning: 1. A computationally efficient model. J Geophys Res 107:D16. doi:10.1029/2001JD001102

    Google Scholar 

  • Mishchenko MI et al (2007) Long-term satellite record reveals likely recent aerosol trend. Science 315:1543

    Article  Google Scholar 

  • Murazaki K, Hess P (2006) How does climate change contribute to surface ozone change over the United States? J Geophys Res 111. doi:10.1029/2005JD005873

  • Myhre G, Grini A, Metzger S (2006) Modelling of nitrate and ammonium-containing aerosols in presence of sea salt. Atmos Chem Phys 6:4809–4821. doi:10.5194/acp-6-4809-2006

    Article  Google Scholar 

  • Prather MJ, Ehhalt D (2001) Atmospheric chemistry and greenhouse gases. In: Houghton JT, Ding Y, Griggs DJ et al (eds) Climate change 2001: the scientific basis. Cambridge University Press, Cambridge, pp 239–287

    Google Scholar 

  • Prather MJ et al (2003) Fresh air in the 21st century? Geophys Res Lett 30:1100–1103. doi:10.1029/2002GL016285

    Article  Google Scholar 

  • Ramaswamy V, Boucher O, Haigh J, Hauglustaine D, Haywood J, Myhre G, Nakajima T, Shi GY, Solomon S (2001) Radiative forcing of climate change. In: Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA (eds) Climate change 2001: The scientific basis, contribution of working group I to the third assessment report of the Intergovernmental Panel on Climate Change (IPCC). Cambridge University Press, Cambridge, United Kingdom, p 881

    Google Scholar 

  • Reay DS, Dentener F, Smith P, Grace J, Feely RA (2008) Global nitrogen deposition and carbon sinks. Nature Geosci 1:430–437

    Article  Google Scholar 

  • Reidmiller DR, Fiore AM, Jaffe DA, Bergmann D, Cuvelier C, Dentener FJ, Duncan BN, Folberth G, Gauss M, Gong S, Hess P, Jonson JE, Keating T, Lupu A, Marmer E, Park R, Schultz MG, Shindell DT, Szopa S, Vivanco MG, Wild O, Zuber A (2009) The influence of foreign vs. North American emissions on surface ozone in the US. Atmos Chem Phys 9:5027–5042

    Article  Google Scholar 

  • Remer LA et al (2008) Global aerosol climatology from the MODIS satellite sensors, J Geophys Res 113, D14S07, doi:10.1029/2007JD009661

  • Riahi K, Krey V, Rao S, Chirkov V, Fischer G, Kolp P, Kindermann G, Nakicenovic N, Rafai P (2011) RCP-8.5: exploring the consequence of high emission trajectories. Climatic Change (this issue). doi:10.1007/s10584-011-0149-y

  • Rind D, Lerner J, McLinden C (2001) Changes of tracer distribution in the doubled CO2 climate. J Geophys Res 106, 28,061-28,079

  • Sander SP et al (2006) Chemical kinetics and photochemical data for use in atmospheric studies evaluation number 15, Publication 06-2. Jet Propulsion Laboratory, Pasadena

    Google Scholar 

  • Sanderson MG, Dentener FJ, Fiore AM, Cuvelier C, Keating TJ, Zuber A, Atherton CS, Bergmann DJ, Diehl T, Doherty RM, Duncan BN, Hess P, Horowitz LW, Jacob DJ, Jonson J-E, Kaminski JW, Lupu A, MacKenzie IA, Mancini E, Marmer E, Park R, Pitari G, Prather MJ, Pringle KJ, Schroeder S, Schultz MG, Shindell DT, Szopa S, Wild O, Wind P (2008) A multi-model study of the hemispheric transport and deposition of oxidised nitrogen. Geophys Res Lett 35:L17815. doi:10.1029/2008GL035389

    Article  Google Scholar 

  • Savva Y, Berninger F (2010) Sulphur deposition causes a large–scale growth decline in boreal forests in Eurasia, Global Biogeochem. Cycles, 24, GB3002, doi:10.1029/2009GB003749

  • Schaap M, van Loon M, ten Brink HM, Dentener FJ, Builtjes PJH (2004) Secondary inorganic aerosol simulations for Europe with special attention to nitrate. Atmos Chem Phys 4:857–874

    Article  Google Scholar 

  • Schlesinger WH (1997) Biogeochemistry, an analysis of global change. Academic Press

  • Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proceedings of the National Academy of Sciences 106:203–208. doi:10.1073/pnas.0810193105

    Article  Google Scholar 

  • Schulz M, Textor C, Kinne S, Balkanski Y, Bauer S, Berntsen T, Berglen T, Boucher O, Dentener F, Guibert S, Isaksen ISA, Iversen T, Koch D, Kirkevåg A, Liu X, Montanaro V, Myhre G, Penner JE, Pitari G, Reddy S, Seland Ø, Stier P, Takemura T (2006) Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations. Atmos Chem Phys 6:5225–5246

    Article  Google Scholar 

  • Shindell DT, Faluvegi G, Bell N (2003) Preindustrial-to-present-day radiative forcing by tropospheric ozone from improved simulations with the GISS chemistry-climate GCM. Atmos Chem Phys 3:1675–1702. doi:10.5194/acp-3-1675-2003

    Article  Google Scholar 

  • Shindell DT, Teich H, Chin M, Dentener F, Doherty RM, Faluvegi G, Fiore AM, Hess P, Koch DM, MacKenzie IA, Sanderson MG, Schultz MG, Schulz M, Stevenson DS, Teich H, Textor C, Wild O, Bergmann DJ, Bey I, Bian H, Cuvelier C, Duncan BN, Folberth G, Horowitz LW, Jonson J, Kaminski JW, Marmer E, Park R, Pringle KJ, Schroeder S, Szopa S, Takemura T, Zeng G, Keating TJ, Zuber A (2008) A multi-model assessment of pollution transport to the Arctic. Atmos Chem Phys 8:5353–5372

    Article  Google Scholar 

  • Stevenson D et al (2006) Multi-model ensemble simulations of present-day and near-future tropospheric ozone. J Geophys Res 111:D08301

    Article  Google Scholar 

  • Taylor KE, RJ Stouffer, GA Meehl (2009) A summary of the CMIP5 experiment design. http://www-pcmdi.llnl.gov/

  • Thompson DWJ, Solomon S (2002) Interpretation of recent southern hemisphere climate change. Science 296. doi:10.1126/science.1069270

  • Thomson AM, Calvin KV, Smith SJ, Kyle GP, Volke A, Patel P, Delgado-Arias S, Bond-Lamberty B, Wise MA, Clarke LE et al (2011) RCP4.5: a pathway for stabilization of radiative forcing by 2100. Climatic Change (this issue). doi:10.1007/s10584-011-0151-4

  • Thornton PE, Lamarque J-F, Rosenbloom NA, Mahowald N (2007) Effects of terrestrial carbon-nitrogen cycle coupling on climate-carbon cycle dynamics. Global Biogeochemical Cycles 21, GB4018, doi:10.1029/2006GB002868

  • Tie XX, Brasseur GP, Emmons LK et al (2001) Effects of aerosols on tropospheric oxidants: a global model study. J Geophys Res 106:2931–2964

    Google Scholar 

  • Tie XX, Madronich S, Walters S et al (2005) Assessment of the global impact of aerosols on tropospheric oxidants. J Geophys Res 110. doi:10.1029/2004JD005359

  • van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque J-F, Matsui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011a) The representative concentration pathways: an overview. Climatic Change. doi:10.1007/s10584-011-0148-z

  • van Vuuren DP, Stehfest E, Den Elzen MGJ, Deetman S, Hof A, Isaac M, Klein Goldewijk K, Kram T, Mendoza Beltran A, Oostenrijk R et al (2011b) RCP2.6: exploring the possibility to keep global mean temperature change below 2 degrees. Climatic Change (this issue). doi:10.1007/s10584-011-0152-3

  • Young PJ, Arneth A, Schurgers G, Zeng G, Pyle JA (2009) The CO2 inhibition of terrestrial isoprene emission significantly affects future ozone projections. Atmos Chem Phys 9:2793–2803

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the three anonymous reviewers, P. Hess and E. Holland for their constructive feedback on previous versions of this paper. A. J. C. and F. V. were funded by the Department of Energy under the SciDAC program. Computing resources were provided by the Climate Simulation Laboratory at NCAR’s Computational and Information Systems Laboratory (CISL), sponsored by the National Science Foundation and other agencies.This research was enabled by CISL compute and storage resources. Bluefire, a 4,064-processor IBM Power6 resource with a peak of 77 TeraFLOPS provided more than 7.5 million computing hours, the GLADE high-speed disk resources provided 0.4 PetaBytes of dedicated disk and CISL's 12-PB HPSS archive provided over 1 PetaByte of storage in support of this research project. The CESM project is supported by the National Science Foundation and the Office of Science (BER) of the U.S. Department of Energy. The National Center for Atmospheric Research is operated by the University Corporation for Atmospheric Research under sponsorship of the National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Lamarque.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lamarque, JF., Kyle, G.P., Meinshausen, M. et al. Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways. Climatic Change 109, 191 (2011). https://doi.org/10.1007/s10584-011-0155-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10584-011-0155-0

Keywords

Navigation