Skip to main content

Advertisement

Log in

A novel orthotopic murine model provides insights into cellular and molecular characteristics contributing to human osteosarcoma

  • Original Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

As a reliable model for osteosarcoma is lacking, three human cell lines (SaOS-2, U2OS and 143B) were evaluated in cell-based assays for proliferation, adhesion, migration, invasion, anchorage-independent growth, angiogenesis, mineralised nodule formation, plasmid transfection and oligonucleotide transfection. Tumor take and metastasis after orthotopic injection of the three cell lines into mice was monitored. The levels of expression of typical bone markers were determined with semi-quantitative RT-PCR in cultured cells, primary tumors, and for the SaOS-2 cell line, the metastases. Tumors grew and spread to the lungs within 3 and 5 weeks respectively, mimicking the clinical progression of the disease as analysed by x-ray. Expression of molecular markers in SaOS-2 indicated a mostly differentiated cell type at the primary and secondary sites. The ability of osteosarcoma cells to interact with collagen-1 and to form mineralised deposits correlated positively with tumor aggression in vivo. Expression of alkaline phosphatase was a common theme in both tumor models at the primary site. The newly established SaOS-2 model should allow the testing of candidate anti-osteosarcoma agents as well as dissection of more intricate mechanisms involved in human osteosarcoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Mankin HJ, Hornicek FJ, Rosenberg AE, Harmon DC, Gebhardt MC (2004) Survival data for 648 patients with osteosarcoma treated at one institution. Clin Orthop Relat Res 429:286–91

    Article  PubMed  Google Scholar 

  2. Link MP, Goorin AM, Miser AW, Green AA, Pratt CB, Belasco JB, Pritchard J, Malpas JS, Baker AR, Kirkpatrick JA, et al (1986) The effect of adjuvant chemotherapy on relapse-free survival in patients with osteosarcoma of the extremity. N Engl J Med 314:1600–1606

    Article  PubMed  CAS  Google Scholar 

  3. Ek E, Dass CR, Choong PF (2006) Commonly used mouse models for osteosarcoma. Crit Rev Oncol Hematol 60(1):1–8

    PubMed  Google Scholar 

  4. Zhou H, Choong PF, McCarthy R, Chou ST, Martin TK, Ng KW (1994) In situ hybridisation to show sequential expression of osteoblast gene markers during bone formation in vivo. J Bone Miner Res 9:1489–1499

    Article  PubMed  CAS  Google Scholar 

  5. Fogh J, Fogh JM, Orfeo T (1977) One hundred and twenty-seven cultured human tumor cell lines producing tumors in nude mice. J Natl Cancer Inst 59:221–226

    PubMed  CAS  Google Scholar 

  6. Ponten J, Saksela E (1967) Two established in vitro cell lines from human mesenchymal tumours. Int. J. Cancer 2:434–447

    PubMed  CAS  Google Scholar 

  7. McAllister RM, Gardner MB, Greene AE, Bradt C, Nichols WW, Landing BH (1971) Cultivation in vitro of cells from a human osteosarcoma. Cancer 27:397–402

    Article  PubMed  CAS  Google Scholar 

  8. Dass CR, Nadesapillai AW, Fisher JL, Howard M, Zhou H, Choong PF (2006) Downregulation of uPAR confirms link in osteosarcoma. Clin. Exp Metastasis 23:643–652

    Article  CAS  Google Scholar 

  9. Luu HH, Kang Q, Park JK, Si W, Luo Q, Jiang W, Yin H, Montag AG, Simon MA, Peabody TD, et al (2005) An orthotopic model of human osteosarcoma growth and spontaneous pulmonary metastasis. Clin Exp Metastasis 22:319–329

    Article  PubMed  Google Scholar 

  10. Phung MW, Dass CR (2006) In-vitro and in-vivo assays for angiogenesis-modulating drug discovery and development. J Pharm Pharmacol 58:153–160

    Article  PubMed  CAS  Google Scholar 

  11. Nadiminty N, Lou W, Lee SO, Mehraein-Ghomi F, Kirk JS, Conroy JM, Zhang H, Gao AC (2006) Prostate-specific antigen modulates genes involved in bone remodeling and induces osteoblast differentiation of human osteosarcoma cell line SaOS-2. Clin Cancer Res 12:1420–1430

    Article  PubMed  CAS  Google Scholar 

  12. Dass CR, Walker TL, Kalle WH, Burton MA (2000) A microsphere-liposome (microplex) vector for targeted gene therapy of cancer. II. In vivo biodistribution study in a solid tumor model. Drug Deliv 7:15–19

    Article  PubMed  CAS  Google Scholar 

  13. Dass CR, Saravolac EG, Li Y, Sun LQ (2002) Cellular uptake, distribution, and stability of 10–23 deoxyribozymes. Antisense Nucleic Acid Drug Dev 12:289–299

    Article  PubMed  CAS  Google Scholar 

  14. Fisher JL, Mackie PS, Howard ML, Zhou H, Choong PF (2001) The expression of the urokinase plasminogen activator system in metastatic murine osteosarcoma: An in vivo mouse model. Clin Cancer Res 7:1654–1660

    PubMed  CAS  Google Scholar 

  15. Ward WG, Mikaelian K, Dorey F, Mirra JM, Sassoon A, Holmes EC, Eilber FR, Eckardt JJ (1994) Pulmonary metastases of stage IIB extremity osteosarcoma and subsequent pulmonary metastases. J Clin Oncol 12:1849–1858

    PubMed  CAS  Google Scholar 

  16. Al-Mehdi AB, Tozawa K, Fisher AB, Shientag L, Lee A, Muschel RJ (2000) Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis Nat Med 6:100–102

    Article  PubMed  CAS  Google Scholar 

  17. Mizuno M, Kuboki Y (2001) Osteoblast-related gene expression of bone marrow cells during the osteoblastic differentiation induced by type I collagen. J Biochem. (Tokyo) 129:133–138

    CAS  Google Scholar 

  18. Sell S (2006) Cancer stem cells and differentiation therapy. Tum. Biol 27:59–70

    Article  Google Scholar 

  19. Wai PY, Kuo PC (2004) The role of osteopontin in tumor metastasis. J Surg Res 121:228–241

    Article  PubMed  CAS  Google Scholar 

  20. Teramoto H, Castellone MD, Malek RL, Letwin N, Frank B, Gutkind JS, Lee NH (2005) Autocrine activation of an osteopontin-CD44-Rac pathway enhances invasion and transformation by H-RasV12 Oncogene 24:489–501

    Article  PubMed  CAS  Google Scholar 

  21. Dacic S, Kalajzic I, Visnjic D, Lichtler AC, Rowe DW (2001) Col1a1-driven transgenic markers of osteoblast lineage progression. J Bone Miner Res 16(7):1228–1236

    Google Scholar 

  22. Andela VB, Sheu TJ, Puzas EJ, Schwarz EM, O’Keefe RJ, Rosier RN (2002) Malignant reversion of a human osteosarcoma cell line, Saos-2, by inhibition of NFkappaB. Biochem Biophys Res Commun 297:237–241

    Article  PubMed  CAS  Google Scholar 

  23. Andrianarivo AG, Robinson JA, Mann KG, Tracy RP (1992) Growth on type I collagen promotes expression of the osteoblastic phenotype in human osteosarcoma MG-63 cells. J Cell Physiol 153:256–265

    Article  PubMed  CAS  Google Scholar 

  24. Mettouchi A, Cabon F, Montreau N, Vernier P, Mercier G, Blangy D, Tricoire H, Vigier P, Binetruy B (1994) SPARC and thrombospondin genes are repressed by the c-jun oncogene in rat embryo fibroblasts. EMBO J 13:5668–5678

    PubMed  CAS  Google Scholar 

  25. Mizuno A, Amizuka N, Irie K, Murakami A, Fujise N, Kanno T, Sato Y, Nakagawa N, Yasuda H, Mochizuki S, et al (1998) Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem Biophys Res Commun 247:610–615

    Article  PubMed  CAS  Google Scholar 

  26. Wada T, Nakashima T, Hiroshi N, Penninger JM (2006) RANKL-RANK signaling in osteoclastogenesis and bone disease. Trends Mol Med 12:17–25

    Article  PubMed  CAS  Google Scholar 

  27. Martin TJ (2004) Paracrine regulation of osteoclast formation and activity: milestones in discovery. J Musculoskelet Neuronal Interact 4:243–253

    PubMed  CAS  Google Scholar 

  28. McGary EC, Weber K, Mills L, Doucet M, Lewis V, Lev DC, Fidler IJ, Bar-Eli M (2002) Inhibition of platelet-derived growth factor-mediated proliferation of osteosarcoma cells by the novel tyrosine kinase inhibitor STI571. Clin Cancer Res. 8:3584–3591

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Cancer Council Victoria, Australian Orthopaedics Association, and National Health and Medical Research Council. The authors thank John Slavin and Daphne Hards for their assistance with histology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Crispin R. Dass.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dass, C.R., Ek, E.T., Contreras, K.G. et al. A novel orthotopic murine model provides insights into cellular and molecular characteristics contributing to human osteosarcoma. Clin Exp Metastasis 23, 367–380 (2006). https://doi.org/10.1007/s10585-006-9046-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-006-9046-6

Keywords

Navigation