Skip to main content

Advertisement

Log in

Tumor location and nature of lymphatic vessels are key determinants of cancer metastasis

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Tumor metastasis to lymph nodes is a key indicator of patient survival, and is enhanced by the neo-lymphatics induced by tumor-secreted VEGF-C or VEGF-D, acting via VEGFR-3 signalling. These targets constitute important avenues for anti-metastatic treatment. Despite this new understanding, clinical observations linking metastasis with tumor depth or location suggest that lymphangiogenic growth factors are not the sole determinants of metastasis. Here we explored the influence of tumor proximity to lymphatics capable of responding to growth factors on nodal metastasis in a murine VEGF-D over-expression tumor model. We found that primary tumor location profoundly influenced VEGF-D-mediated lymph node metastasis: 89 % of tumors associated with the flank skin metastasised, in contrast with only 19 % of tumors located more deeply on the body wall (p < 0.01). Lymphatics in metastatic tumors arose from small lymphatics, and displayed distinct molecular and morphological profiles compared with those found in normal lymphatics. Smaller lymphatic subtypes were more abundant in skin (2.5-fold, p < 0.01) than in body wall, providing a richer source of lymphatics for VEGF-D+ skin tumors, a phenomenon also confirmed in human samples. This study shows that the proximity of a VEGF-D+ primary tumor to small lymphatics is an important determinant of metastasis. These observations may explain why tumor location relative to the lymphatic network is prognostically important for some human cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BW:

Body wall

DAB:

Diaminobenzidene

IL:

Initial lymphatics

LEC:

Lymphatic endothelial cell

LN:

Lymph node

LVD:

Lymphatic vessel density

LYVE:

Lymphatic vessel endothelial hyaluronan receptor

Np:

Neuropilin

PC:

Pre-collector

PECAM-1:

Platelet endothelial cell adhesion molecule-1

SCID/NOD:

Severe combined immunodeficiency/non-obese diabetic mice

SK:

Skin

SMC:

Smooth muscle cell

VEGF:

Vascular endothelial growth factor

References

  1. Markovic SN, Erickson LA, Rao RD et al (2007) Malignant melanoma in the 21st century, part 2: staging, prognosis, and treatment. Mayo Clin Proc 82:490–513

    Article  PubMed  Google Scholar 

  2. DeVita VT, Hellman S, Rosenberg A (2001) Cancer, principles and practice of oncology, 6th edn. Lippincott, Williams and Wilkins, Philadelphia, PA

    Google Scholar 

  3. Mandriota SJ, Jussila L, Jeltsch M et al (2001) Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20:672–682

    Article  PubMed  CAS  Google Scholar 

  4. Skobe M, Hawighorst T, Jackson DG et al (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7:192–198

    Article  PubMed  CAS  Google Scholar 

  5. Stacker SA, Caesar C, Baldwin ME et al (2001) VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 7:186–191

    Article  PubMed  CAS  Google Scholar 

  6. Nagy JA, Vasile E, Feng D et al (2002) Vascular permeability factor/vascular endothelial growth factor induces lymphangiogenesis as well as angiogenesis. J Exp Med 196:1497–1506

    Article  PubMed  CAS  Google Scholar 

  7. Schietroma C, Cianfarani F, Lacal PM et al (2003) Vascular endothelial growth factor-C expression correlates with lymph node localization of human melanoma metastases. Cancer 98:789–797

    Article  PubMed  CAS  Google Scholar 

  8. White JD, Hewett PW, Kosuge D et al (2002) Vascular endothelial growth factor-D expression is an independent prognostic marker for survival in colorectal carcinoma. Cancer Res 62:1669–1675

    PubMed  CAS  Google Scholar 

  9. Stacker SA, Williams RA, Achen MG (2004) Lymphangiogenic growth factors as markers of tumor metastasis. APMIS 112:539–549

    Article  PubMed  CAS  Google Scholar 

  10. Caunt M, Mak J, Liang WC et al (2008) Blocking neuropilin-2 function inhibits tumor cell metastasis. Cancer Cell 13:331–342

    Article  PubMed  CAS  Google Scholar 

  11. Achen MG, Mann GB, Stacker SA (2006) Targeting lymphangiogenesis to prevent tumour metastasis. Br J Cancer 94:1355–1360

    Article  PubMed  CAS  Google Scholar 

  12. Achen MG, McColl BK, Stacker SA (2005) Focus on lymphangiogenesis in tumor metastasis. Cancer Cell 7:121–127

    Article  PubMed  CAS  Google Scholar 

  13. Shayan R, Achen MG, Stacker SA (2006) Lymphatic vessels in cancer metastasis: bridging the gaps. Carcinogenesis 27:1729–1738

    Article  PubMed  CAS  Google Scholar 

  14. Goydos JS, Gorski DH (2003) Vascular endothelial growth factor C mRNA expression correlates with stage of progression in patients with melanoma. Clin Cancer Res 9:5962–5967

    PubMed  CAS  Google Scholar 

  15. Nakamura Y, Yasuoka H, Tsujimoto M et al (2005) Lymph vessel density correlates with nodal status, VEGF-C expression, and prognosis in breast cancer. Breast Cancer Res Treat 91:125–132

    Article  PubMed  CAS  Google Scholar 

  16. Shayan R, Karnezis T, Murali R et al (2012) Variations in tumor lymphatic density in primary cutaneous melanomas predicts risk of lymph node metastasis. Histopathology. doi:10.1111/j.1365-2559.2012.04310.x.

  17. Stacker SA, Achen MG, Jussila L et al (2002) Lymphangiogenesis and cancer metastasis. Nat Rev Cancer 2:573–583

    Article  PubMed  CAS  Google Scholar 

  18. Alitalo K, Tammela T, Petrova TV (2005) Lymphangiogenesis in development and human disease. Nature (Lond) 438:946–953

    Article  CAS  Google Scholar 

  19. Achen MG, Stacker SA (2008) Molecular control of lymphatic metastasis. Ann NY Acad Sci 1131:225–234

    Article  PubMed  CAS  Google Scholar 

  20. Debinski W, Slagle-Webb B, Achen MG et al (2001) VEGF-D is an X-linked/AP-1 regulated putative onco-angiogen in human glioblastoma multiforme. Mol Med 7:598–608

    PubMed  CAS  Google Scholar 

  21. Cunningham JE, Juri AL, Oman L et al (2006) Is risk of axillary lymph node metastasis associated with proximity of breast cancer to the skin? Breast Cancer Res Treat 100:319–328

    Article  PubMed  Google Scholar 

  22. Onogawa S, Kitadai Y, Tanaka S et al (2004) Expression of VEGF-C and VEGF-D at the invasive edge correlates with lymph node metastasis and prognosis of patients with colorectal carcinoma. Cancer Sci 95:32–39

    Article  PubMed  CAS  Google Scholar 

  23. Bevacqua SJ, Welch DR, Diez de Pinos SM et al (1990) Quantitation of human melanoma, carcinoma and sarcoma tumor cell adhesion to lymphatic endothelium. Lymphology 23:4–14

    PubMed  CAS  Google Scholar 

  24. Padera TP, Kadambi A, di Tomaso E et al (2002) Lymphatic metastasis in the absence of functional intratumor lymphatics. Science 296:1883–1886

    Article  PubMed  CAS  Google Scholar 

  25. Smith KJ, Jones PF, Burke DA et al (2011) Lymphatic vessel distribution in the mucosa and submucosa and potential implications for T1 colorectal tumors. Dis Colon Rectum 54:35–40

    Article  PubMed  Google Scholar 

  26. Scavelli C, Weber E, Agliano M et al (2004) Lymphatics at the crossroads of angiogenesis and lymphangiogenesis. J Anat 204:433–449

    Article  PubMed  CAS  Google Scholar 

  27. Van der Auwera I, Cao Y, Tille JC et al (2006) First international consensus on the methodology of lymphangiogenesis quantification in solid human tumours. Br J Cancer 95:1611–1625

    Article  PubMed  Google Scholar 

  28. Pepper MS, Skobe M (2003) Lymphatic endothelium: morphological, molecular and functional properties. J Cell Biol 163:209–213

    Article  PubMed  CAS  Google Scholar 

  29. Makinen T, Adams RH, Bailey J et al (2005) PDZ interaction site in ephrinB2 is required for the remodeling of lymphatic vasculature. Genes Dev 19:397–410

    Article  PubMed  Google Scholar 

  30. Baldwin ME, Stacker SA, Achen MG (2002) Molecular control of lymphangiogenesis. BioEssays 24:1030–1040

    Article  PubMed  CAS  Google Scholar 

  31. Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8:464–478

    Article  PubMed  CAS  Google Scholar 

  32. Tammela T, Saaristo A, Holopainen T et al (2007) Therapeutic differentiation and maturation of lymphatic vessels after lymph node dissection and transplantation. Nat Med 13:1458–1466

    Article  PubMed  CAS  Google Scholar 

  33. Karnezis T, Shayan R, Caesar C et al (2012) VEGF-D promotes tumor metastasis by regulating prostaglandins produced by the collecting lymphatic endothelium. Cancer Cell 21:181–195

    Article  PubMed  CAS  Google Scholar 

  34. Azzali G (2007) Tumor cell transendothelial passage in the absorbing lymphatic vessel of transgenic adenocarcinoma mouse prostate. Am J Pathol 170:334–346

    Article  PubMed  CAS  Google Scholar 

  35. He Y, Rajantie I, Pajusola K et al (2005) Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res 65:4739–4746

    Article  PubMed  CAS  Google Scholar 

  36. Hoshida T, Isaka N, Hagendoorn J et al (2006) Imaging steps of lymphatic metastasis reveals that vascular endothelial growth factor-C increases metastasis by increasing delivery of cancer cells to lymph nodes: therapeutic implications. Cancer Res 66:8065–8075

    Article  PubMed  CAS  Google Scholar 

  37. Shayan R, Karnezis T, Tsantikos E et al (2007) A system for quantifying the patterning of the lymphatic vasculature. Growth Factors 25:417–425

    Article  PubMed  CAS  Google Scholar 

  38. Achen MG, Jeltsch M, Kukk E et al (1998) Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA 95:548–553

    Article  PubMed  CAS  Google Scholar 

  39. Stacker SA, Stenvers K, Caesar C et al (1999) Biosynthesis of vascular endothelial growth factor-D involves proteolytic processing which generates non-covalent homodimers. J Biol Chem 274:32127–32136

    Article  PubMed  CAS  Google Scholar 

  40. Saaristo A, Tammela T, Farkkila A et al (2006) Vascular endothelial growth factor-C accelerates diabetic wound healing. Am J Pathol 169:1080–1087

    Article  PubMed  CAS  Google Scholar 

  41. Muthuchamy M, Gashev A, Boswell N et al (2003) Molecular and functional analyses of the contractile apparatus in lymphatic muscle. FASEB J 17:920–922

    PubMed  CAS  Google Scholar 

  42. Karpanen T, Egeblad M, Karkkainen MJ et al (2001) Vascular endothelial growth factor C promotes tumor lymphangiogenesis and intralymphatic tumor growth. Cancer Res 61:1786–1790

    PubMed  CAS  Google Scholar 

  43. Wirzenius M, Tammela T, Uutela M et al (2007) Distinct vascular endothelial growth factor signals for lymphatic vessel enlargement and sprouting. J Exp Med 204:1431–1440

    Article  PubMed  CAS  Google Scholar 

  44. Farnsworth RH, Karnezis T, Shayan R et al (2011) A role for bone morphogenic protein-4 in vascular endothelial growth factor-D mediated tumor growth, metastasis and vessel remodelling. Cancer Res 71:6547–6557

    Article  PubMed  CAS  Google Scholar 

  45. Achen MG, Stacker SA (2012) Vascular endothelial growth factor-D: signalling mechanisms, biology and clinical relevance. Growth Factors 30:283–296

    Google Scholar 

  46. Shayan R, Rozen W, Bernard S et al (2008) Perforator dilatation induced by body weight gain is not reversed by subsequent weight loss: implications for perforator flaps. Plast Reconstr Surg 122:1765–1772

    Article  PubMed  CAS  Google Scholar 

  47. Stadelmann WK, Reintgen DS (1998) Prognosis in malignant melanoma. Hematol Oncol Clin North Am 12:767–796, vi

    Google Scholar 

  48. Deutsch A, Lubach D, Nissen S et al (1992) Ultrastructural studies on the invasion of melanomas in initial lymphatics of human skin. J Invest Dermatol 98:64–67

    Article  PubMed  CAS  Google Scholar 

  49. Gordon EJ, Rao S, Pollard JW et al (2010) Macrophages define dermal lymphatic vessel calibre during development by regulating lymphatic endothelial cell proliferation. Development 137:3899–3910

    Article  PubMed  CAS  Google Scholar 

  50. Harvey NL, Gordon EJ (2012) Deciphering the roles of macrophages in developmental and inflammation stimulated lymphangiogenesis. Vasc Cell 4:15

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors thank M. Kesar and staff at the Animal Facility at the Ludwig Institute for Cancer Research, Melbourne, for assistance with mouse experiments; M. Francois for provision of NG2 antibody; J. Taylor for assistance in generating figures; Y. Zhang for histology services; S. Cody for assistance with imaging; and A. Burgess and M. Hibbs for critical reading of this manuscript. Animal experiments and treatment of archived human tissue samples were in accordance with NH&MRC guidelines. This work was funded partly by a Program Grant from the National Health and Medical Research Council of Australia (NH&MRC). SAS and MGA are supported by Senior Research Fellowships from the NH&MRC. SAS would like to acknowledge the support of the Pfizer Australia Fellowship. RS is supported by the Raelene Boyle Sporting Chance Foundation and Royal Australasian College of Surgeons (RACS) Foundation Scholarship, and the RACS Surgeon Scientist Program. This work was supported by funds from the Operational Infrastructure Support Program provided by the Victorian Government, Australia.

Ethical standard

Ethics approval for research using human and animal samples was obtained from the Royal Melbourne Hospital Human Ethics Research Council, and the Ludwig Institute for Cancer Research Animal Ethics Committee, respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Stacker.

Additional information

SAS and MGA are consultants to Vegenics Ltd and are stock holders in Circadian Technologies.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shayan, R., Inder, R., Karnezis, T. et al. Tumor location and nature of lymphatic vessels are key determinants of cancer metastasis. Clin Exp Metastasis 30, 345–356 (2013). https://doi.org/10.1007/s10585-012-9541-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-012-9541-x

Keywords

Navigation