Skip to main content

Advertisement

Log in

Signaling for lymphangiogenesis via VEGFR-3 is required for the early events of metastasis

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Metastasis to regional lymph nodes is an important and early event in many tumors. Vascular endothelial growth factor-C (VEGF-C), VEGF-D and their receptor VEGFR-3, play a role in tumor spread via the lymphatics, although the timing of their involvement is not understood. In contrast, VEGFR-2, activated by VEGF-A, VEGF-C and VEGF-D, is a mediator of angiogenesis and drives primary tumor growth. We demonstrate the critical role for VEGFR-3, but not VEGFR-2, in the early events of metastasis. In a tumor model exhibiting both VEGF-D-dependent angiogenesis and lymphangiogenesis, an antibody to VEGFR-2 (DC101) was capable of inhibiting angiogenesis (79 % reduction in PECAM + blood vessels) and growth (93 % reduction in tumor volume). However, unlike an anti-VEGFR-3 Mab (mF4-31C1), DC101 was not capable of eliminating either tumor lymphangiogenesis or lymphogenous metastasis (60 % reduction of lymph node metastasis by DC101 vs 95 % by mF4-31C1). Early excision of the primary tumors demonstrated that VEGF-D-mediated tumor spread precedes angiogenesis-induced growth. Small but highly metastatic primary human breast cancers had significantly higher lymphatic vessel density (23.1 vessels/mm2) than size-matched (11.7) or larger non-metastatic tumors (12.4) thus supporting the importance of lymphatic vessels, as opposed to angiogenesis-mediated primary tumor growth, for nodal metastasis. These results suggest that lymphangiogenesis via VEGF-D is more critical than angiogenesis for nodal metastasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

LN:

Lymph node

LVD:

Lymphatic vessel density

LYVE-1:

Lymphatic vessel endothelial receptor 1

NK:

Natural killer

Mab:

Monoclonal antibody

MTT:

3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide

PBS:

Phosphate-buffered saline

PECAM-1:

Platelet endothelial cell adhesion molecule-1

SCID/NOD:

Severe combined immunodeficiency/non-obese diabetic

VEGF:

Vascular endothelial growth factor

VEGFR:

Vascular endothelial growth factor receptor

References

  1. Fidler IJ (2003) The pathogenesis of cancer metastasis: the ‘seed and soil’ hypothesis revisited. Nat Rev Cancer 3:453–458

    Article  PubMed  CAS  Google Scholar 

  2. Campbell PJ, Yachida S, Mudie LJ et al (2010) The patterns and dynamics of genomic instability in metastatic pancreatic cancer. Nature 467:1109–1113

    Article  PubMed  CAS  Google Scholar 

  3. Ferrara N (2002) VEGF and the quest for tumour angiogenesis factors. Nat Rev Cancer 2:795–803

    Article  PubMed  CAS  Google Scholar 

  4. Ferrara N, Hillan KJ, Gerber HP et al (2004) Discovery and development of bevacizumab, an anti-VEGF antibody for treating cancer. Nat Rev Drug Discov 3:391–400

    Article  PubMed  CAS  Google Scholar 

  5. Witte L, Hicklin DJ, Zhu Z et al (1998) Monoclonal antibodies targeting the VEGF receptor-2 (Flk1/KDR) as an anti-angiogenic therapeutic strategy. Cancer Metastasis Rev 17:155–161

    Article  PubMed  CAS  Google Scholar 

  6. Hurwitz H, Fehrenbacher L, Novotny W et al (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. New Engl J Med 350:2335–2342

    Article  PubMed  CAS  Google Scholar 

  7. Hurwitz HI, Fehrenbacher L, Hainsworth JD et al (2005) Bevacizumab in combination with fluorouracil and leucovorin: an active regimen for first-line metastatic colorectal cancer. J Clin Oncol 23:3502–3508

    Article  PubMed  CAS  Google Scholar 

  8. Allegra CJ, Yothers G, O’Connell MJ et al (2011) Phase III trial assessing bevacizumab in stages II and III carcinoma of the colon: results of NSABP protocol C-08. J Clin Oncol 29:11–16

    Article  PubMed  CAS  Google Scholar 

  9. Joukov V, Pajusola K, Kaipainen A et al (1996) A novel vascular endothelial growth factor, VEGF-C, is a ligand for the Flt4 (VEGFR-3) and KDR (VEGFR-2) receptor tyrosine kinases. EMBO J 15:290–298

    PubMed  CAS  Google Scholar 

  10. Achen MG, Jeltsch M, Kukk E et al (1998) Vascular endothelial growth factor D (VEGF-D) is a ligand for the tyrosine kinases VEGF receptor 2 (Flk1) and VEGF receptor 3 (Flt4). Proc Natl Acad Sci USA 95:548–553

    Article  PubMed  CAS  Google Scholar 

  11. Achen MG, Stacker SA (2012) Vascular endothelial growth factor-D: signalling mechanisms, biology and clinical relevance. Growth Factors 5:283–296

    Article  Google Scholar 

  12. Banerji S, Ni J, Wang S-X et al (1999) LYVE-1, a new homologue of the CD44 glycoprotein, is a lymph-specific receptor for hyaluronan. J Cell Biol 144:789–801

    Article  PubMed  CAS  Google Scholar 

  13. Breiteneder-Geleff S, Soleiman A, Kowalski H et al (1999) Angiosarcomas express mixed endothelial phenotypes of blood and lymphatic capillaries. Podoplanin as a specific marker for lymphatic endothelium. Am J pathol 154:385–394

    Article  PubMed  CAS  Google Scholar 

  14. Mandriota SJ, Jussila L, Jeltsch M et al (2001) Vascular endothelial growth factor-C-mediated lymphangiogenesis promotes tumour metastasis. EMBO J 20:672–682

    Article  PubMed  CAS  Google Scholar 

  15. Skobe M, Hamberg LM, Hawighorst T et al (2001) Concurrent induction of lymphangiogenesis, angiogenesis, and macrophage recruitment by vascular endothelial growth factor-C in melanoma. Am J Pathol 159:893–903

    Article  PubMed  CAS  Google Scholar 

  16. Shayan R, Inder R, Karnezis T et al (2013) Tumor location and nature of lymphatic vessels are key determinants of cancer metastasis. Clin Exp Metastasis 30:345–356

    Article  PubMed  CAS  Google Scholar 

  17. Karnezis T, Shayan R, Caesar C et al (2012) VEGF-D promotes tumor metastasis by regulating prostaglandins produced by the collecting lymphatic endothelium. Cancer Cell 21:181–195

    Article  PubMed  CAS  Google Scholar 

  18. Stacker SA, Caesar C, Baldwin ME et al (2001) VEGF-D promotes the metastatic spread of tumor cells via the lymphatics. Nat Med 7:186–191

    Article  PubMed  CAS  Google Scholar 

  19. Shayan R, Achen MG, Stacker SA (2006) Lymphatic vessels in cancer metastasis: bridging the gaps. Carcinogenesis 27:1729–1738

    Article  PubMed  CAS  Google Scholar 

  20. Skobe M, Hawighorst T, Jackson DG et al (2001) Induction of tumor lymphangiogenesis by VEGF-C promotes breast cancer metastasis. Nat Med 7:192–198

    Article  PubMed  CAS  Google Scholar 

  21. Kopfstein L, Veikkola T, Djonov VG et al (2007) Distinct roles of vascular endothelial growth factor-D in lymphangiogenesis and metastasis. Am J Pathol 170:1348–1361

    Article  PubMed  CAS  Google Scholar 

  22. Farnsworth RH, Karnezis T, Shayan R et al (2011) A role for bone morphogenic protein-4 in vascular endothelial growth factor-D mediated tumor growth, metastasis and vessel remodelling. Cancer Res 71:6547–6557

    Article  PubMed  CAS  Google Scholar 

  23. Achen MG, Roufail S, Domagala T et al (2000) Monoclonal antibodies to vascular endothelial growth factor-D block its interactions with both VEGF receptor-2 and VEGF receptor-3. Eur J Biochem 267:2505–2515

    Article  PubMed  CAS  Google Scholar 

  24. Stacker SA, Williams RA, Achen MG (2004) Lymphangiogenic growth factors as markers of tumor metastasis. APMIS 112:539–549

    Article  PubMed  CAS  Google Scholar 

  25. Kitadai Y, Kodama M, Cho S et al (2005) Quantitative analysis of lymphangiogenic markers for predicting metastasis of human gastric carcinoma to lymph nodes. Int J Cancer 115:388–392

    Article  PubMed  CAS  Google Scholar 

  26. White JD, Hewett PW, Kosuge D et al (2002) Vascular endothelial growth factor-D expression is an independent prognostic marker for survival in colorectal carcinoma. Cancer Res 62:1669–1675

    PubMed  CAS  Google Scholar 

  27. Renyi-Vamos F, Tovari J, Fillinger J et al (2005) Lymphangiogenesis correlates with lymph node metastasis, prognosis, and angiogenic phenotype in human non-small cell lung cancer. Clin Cancer Res 11:7344–7353

    Article  PubMed  CAS  Google Scholar 

  28. Schoppmann SF, Bayer G, Aumayr K et al (2004) Prognostic value of lymphangiogenesis and lymphovascular invasion in invasive breast cancer. Ann Surg 240:306–312

    Article  PubMed  Google Scholar 

  29. Rubbia-Brandt L, Terris B, Giostra E et al (2004) Lymphatic vessel density and vascular endothelial growth factor-C expression correlate with malignant behavior in human pancreatic endocrine tumors. Clin Cancer Res 10:6919–6928

    Article  PubMed  CAS  Google Scholar 

  30. Sipos B, Klapper W, Kruse ML et al (2004) Expression of lymphangiogenic factors and evidence of intratumoral lymphangiogenesis in pancreatic endocrine tumors. Am J Pathol 165:1187–1197

    Article  PubMed  CAS  Google Scholar 

  31. Yokoyama Y, Charnock-Jones DS, Licence D et al (2003) Expression of vascular endothelial growth factor (VEGF)-D and its receptor, VEGF receptor 3, as a prognostic factor in endometrial carcinoma. Clin Cancer Res 9:1361–1369

    PubMed  CAS  Google Scholar 

  32. Yokoyama Y, Charnock-Jones DS, Licence D et al (2003) Vascular endothelial growth factor-D is an independent prognostic factor in epithelial ovarian carcinoma. Br J Cancer 88:237–244

    Article  PubMed  CAS  Google Scholar 

  33. Achen MG, McColl BK, Stacker SA (2005) Focus on lymphangiogenesis in tumor metastasis. Cancer Cell 7:121–127

    Article  PubMed  CAS  Google Scholar 

  34. Debinski W, Slagle-Webb B, Achen MG et al (2001) VEGF-D is an X-linked/AP-1 regulated putative onco-angiogen in human glioblastoma multiforme. Mol Med 7:598–608

    PubMed  CAS  Google Scholar 

  35. Stacker SA, Stenvers K, Caesar C et al (1999) Biosynthesis of vascular endothelial growth factor-D involves proteolytic processing which generates non-covalent homodimers. J Biol Chem 274:32127–32136

    Article  PubMed  CAS  Google Scholar 

  36. Pytowski B, Goldman J, Persaud K et al (2005) Complete and specific inhibition of adult lymphatic regeneration by a novel VEGFR-3 neutralizing antibody. J Natl Cancer Inst 97:14–21

    Article  PubMed  CAS  Google Scholar 

  37. Shayan R, Karnezis T, Tsantikos E et al (2007) A system for quantifying the patterning of the lymphatic vasculature. Growth Factors 25:417–425

    Article  PubMed  CAS  Google Scholar 

  38. Roberts N, Kloos B, Cassella M et al (2006) Inhibition of VEGFR-3 activation with the antagonistic antibody more potently suppresses lymph node and distant metastases than inactivation of VEGFR-2. Cancer Res 66:2650–2657

    Article  PubMed  CAS  Google Scholar 

  39. He Y, Kozaki K, Karpanen T et al (2002) Suppression of tumor lymphangiogenesis and lymph node metastasis by blocking vascular endothelial growth factor receptor 3 signaling. J Natl Cancer Inst 94:819–825

    Article  PubMed  CAS  Google Scholar 

  40. He Y, Rajantie I, Pajusola K et al (2005) Vascular endothelial cell growth factor receptor 3-mediated activation of lymphatic endothelium is crucial for tumor cell entry and spread via lymphatic vessels. Cancer Res 65:4739–4746

    Article  PubMed  CAS  Google Scholar 

  41. Burton JB, Priceman SJ, Sung JL et al (2008) Suppression of prostate cancer nodal and systemic metastasis by blockade of the lymphangiogenic axis. Cancer Res 68:7828–7837

    Article  PubMed  CAS  Google Scholar 

  42. Achen MG, Mann GB, Stacker SA (2006) Targeting lymphangiogenesis to prevent tumour metastasis. Br J Cancer 94:1355–1360

    Article  PubMed  CAS  Google Scholar 

  43. Nilsson I, Bahram F, Li X et al (2010) VEGF receptor 2/-3 heterodimers detected in situ by proximity ligation on angiogenic sprouts. EMBO J 29:1377–1388

    Article  PubMed  CAS  Google Scholar 

  44. Tammela T, Zarkada G, Wallgard E et al (2008) Blocking VEGFR-3 suppresses angiogenic sprouting and vascular network formation. Nature 454:656–660

    Article  PubMed  CAS  Google Scholar 

  45. Laakkonen P, Waltari M, Holopainen T et al (2007) Vascular endothelial growth factor receptor 3 is involved in tumor angiogenesis and growth. Cancer Res 67:593–599

    Article  PubMed  CAS  Google Scholar 

  46. Akahane M, Akahane T, Shah A et al (2005) A potential role for vascular endothelial growth factor-D as an autocrine growth factor for human breast carcinoma cells. Anticancer Res 25:701–707

    PubMed  CAS  Google Scholar 

  47. Ebos JM, Lee CR, Cruz-Munoz W et al (2009) Accelerated metastasis after short-term treatment with a potent inhibitor of tumor angiogenesis. Cancer Cell 15:232–239

    Article  PubMed  CAS  Google Scholar 

  48. Paez-Ribes M, Allen E, Hudock J et al (2009) Antiangiogenic therapy elicits malignant progression of tumors to increased local invasion and distant metastasis. Cancer Cell 15:220–231

    Article  PubMed  CAS  Google Scholar 

  49. Singh M, Couto SS, Forrest WF et al (2012) Anti-VEGF antibody therapy does not promote metastasis in genetically engineered mouse tumour models. J Pathol 227:417–430

    Article  PubMed  CAS  Google Scholar 

  50. Chung AS, Kowanetz M, Wu X et al (2012) Differential drug class-specific metastatic effects following treatment with a panel of angiogenesis inhibitors. J Pathol 227:404–416

    Article  PubMed  CAS  Google Scholar 

  51. Stacker SA, Achen MG (2013) Where to now with the VEGF signalling pathway in cancer? Chin J Cancer. doi:10.5732/cjc.012.10319

    PubMed  Google Scholar 

  52. Achen MG, Stacker SA (2008) Molecular control of lymphatic metastasis. Ann NY Acad Sci 1131:225–234

    Article  PubMed  CAS  Google Scholar 

  53. Chu KU, Turner RR, Hansen NM et al (1999) Do all patients with sentinel node metastasis from breast carcinoma need complete axillary node dissection? Ann Surg 229:536–541

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank You-Fang Zhang for scientific and technical help with immunohistochemistry, and the staff of the Animal Facility at the Ludwig Institute for Cancer Research for assistance with SCID/NOD mice. We also thank Anthony Burgess for helpful discussion and critical reading of this manuscript.

Funding

This work was supported by Program Grants and Research Fellowships from the National Health and Medical Research Council of Australia and by funds from the Operational Infrastructure Support Program, Victorian Government, Australia.

Conflict of interest

SAS and MGA are on the Scientific Advisory Board of Vegenics Ltd, a wholly owned subsidiary of Circadian Technologies, are stock holders and consultants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven A. Stacker.

Additional information

Steven A. Stacker and Marc G. Achen are on the Scientific Advisory Board of Vegenics Ltd, a wholly owned subsidiary of Circadian Technologies, are stock holders and consultants.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsumoto, M., Roufail, S., Inder, R. et al. Signaling for lymphangiogenesis via VEGFR-3 is required for the early events of metastasis. Clin Exp Metastasis 30, 819–832 (2013). https://doi.org/10.1007/s10585-013-9581-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-013-9581-x

Keywords

Navigation