Skip to main content

Advertisement

Log in

Blockade of the renin–angiotensin system inhibits growth of colorectal cancer liver metastases in the regenerating liver

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Partial hepatectomy (PH), the preferred option for selected patients with colorectal cancer liver metastases (CRCLM), is associated with 40–80 % tumor recurrence rates. Renin–angiotensin system (RAS) blockade inhibits tumor growth and has been suggested to improve liver regeneration. We documented the effect of RAS blockade on tumor growth and liver regeneration in a murine model. CRCLM induction followed by 70 % PH was performed on 78 CBA mice. Liver regeneration (days 2, 6) and CRCLM tumor load were measured by liver (and tumor) weights, percentage of CRCLM burden and tumor nodule count (days 16, 21). mRNA expression of the RAS components was characterised. Statistical analysis was performed using 2-independent sample T test or Mann–Whitney test (SPSS). Captopril did not impair liver regeneration. By day 21, Captopril decreased tumor burden (percentage of CRCLM in the liver) (48.7 ± 4.7 % control, 24.4 ± 6.2 Captopril; p = 0.008), tumor volume (1046.2 ± 200.2 mm3, 388.3 ± 150.4; p = 0.02), tumor nodule count per image field (181.1 ± 28.5, 68 ± 17.6; p = 0.005) and tumor angiogenesis (71.8 ± 6.4 vessels/mm2, 43.1 ± 7.6; p = 0.015) compared to controls. Captopril enhanced tumor apoptosis (1 ± 0.2 %, 2.5 ± 0.7; p = 0.028). Liver regeneration and tumor development increased liver ACE levels. Blockade of the RAS effectively retarded CRCLM tumor growth at the late stage of tumor development within the regenerating liver without impeding liver regeneration following PH, via anti-angiogenesis and pro-tumor apoptosis. Captopril may be of therapeutic benefit in patients undergoing PH for CRCLM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Saenz NC, Cady B, McDermott WV Jr, Steele GD Jr (1989) Experience with colorectal carcinoma metastatic to the liver. Surg Clin North Am 69(2):361–370

    PubMed  CAS  Google Scholar 

  2. Pestana C, Reitemeier RJ, Moertel CG, Judd ES, Dockerty MB (1964) The natural history of carcinoma of the colon and rectum. Am J Surg 108:826–829

    Article  PubMed  CAS  Google Scholar 

  3. Fong Y, Cohen AM, Fortner JG, Enker WE, Turnbull AD, Coit DG et al (1997) Liver resection for colorectal metastases. J Clin Oncol 15(3):938–946

    PubMed  CAS  Google Scholar 

  4. Ferlay J, Bray F, Pisani P, et al (eds.) (2004) GLOBOCAN 2002: Cancer incidence, mortality and prevalence world-wide. IARC CancerBase, No. 5 Version 2.0. Lyon, France: International Agency for Research on Cancer. Available from: http://www-dep.iarc.fr/. Accessed 18 Nov 2008

  5. Fong Y, Bentrem DJ (2006) CASH (chemotherapy-associated steatohepatitis) costs. Ann Surg 243(1):8–9

    Article  PubMed Central  PubMed  Google Scholar 

  6. Vauthey JN, Pawlik TM, Ribero D, Wu TT, Zorzi D, Hoff PM et al (2006) Chemotherapy regimen predicts steatohepatitis and an increase in 90-day mortality after surgery for hepatic colorectal metastases. J Clin Oncol 24(13):2065–2072

    Article  PubMed  CAS  Google Scholar 

  7. Widakowich C, De Castro G Jr, De Azambuja E, Dinh P, Awada A (2007) Review: side effects of approved molecular targeted therapies in solid cancers. Oncologist 12(12):1443–1455

    Article  PubMed  CAS  Google Scholar 

  8. Koh SL, Ager EI, Christophi C (2010) Liver regeneration and tumour stimulation: implications of the renin–angiotensin system. Liver Int 30(10):1414–1426

    Article  PubMed  CAS  Google Scholar 

  9. Uemura H, Ishiguro H, Nakaigawa N, Nagashima Y, Miyoshi Y, Fujinami K et al (2003) Angiotensin II receptor blocker shows antiproliferative activity in prostate cancer cells: a possibility of tyrosine kinase inhibitor of growth factor. Mol Cancer Ther 2(11):1139–1147

    PubMed  CAS  Google Scholar 

  10. Attoub S, Gaben AM, Al-Salam S, Al-Sultan MA, John A, Nicholls MG et al (2008) Captopril as a potential inhibitor of lung tumor growth and metastasis. Ann N Y Acad Sci 1138:65–72

    Article  PubMed  CAS  Google Scholar 

  11. Greco AJMR, Fokin A Jr, Baber SR, Kadowitz PJ (2006) Angiotensin-(1-7) potentiates responses to bradykinin but does not change responses to angiotensin I. Can J Physiol Pharmacol 84(11):1163–1175

    Article  PubMed  CAS  Google Scholar 

  12. Neo JH, Ager EI, Angus PW, Zhu J, Herath CB, Christophi C (2010) Changes in the renin angiotensin system during the development of colorectal cancer liver metastases. BMC Cancer 10(1):134

    Article  PubMed Central  PubMed  Google Scholar 

  13. Neo JH, Malcontenti-Wilson C, Muralidharan V, Christophi C (2007) Effect of ACE inhibitors and angiotensin II receptor antagonists in a mouse model of colorectal cancer liver metastases. J Gastroenterol Hepatol 22(4):577–584

    Article  PubMed  CAS  Google Scholar 

  14. Miyajima A, Kosaka T, Asano T, Seta K, Kawai T, Hayakawa M (2002) Angiotensin II type I antagonist prevents pulmonary metastasis of murine renal cancer by inhibiting tumor angiogenesis. Cancer Res 62(15):4176–4179

    PubMed  CAS  Google Scholar 

  15. Fujita M, Hayashi I, Yamashina S, Itoman M, Majima M (2002) Blockade of angiotensin AT1a receptor signaling reduces tumor growth, angiogenesis, and metastasis. Biochem Biophys Res Commun 294(2):441–447

    Article  PubMed  CAS  Google Scholar 

  16. Noguchi R, Yoshiji H, Kuriyama S, Yoshii J, Ikenaka Y, Yanase K et al (2003) Combination of interferon-beta and the angiotensin-converting enzyme inhibitor, perindopril, attenuates murine hepatocellular carcinoma development and angiogenesis. Clin Cancer Res 9(16 Pt 1):6038–6045

    PubMed  CAS  Google Scholar 

  17. Volpert OV, Ward WF, Lingen MW, Chesler L, Solt DB, Johnson MD et al (1996) Captopril inhibits angiogenesis and slows the growth of experimental tumors in rats. J Clin Invest 98(3):671–679

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  18. Kedika R, Patel M, Pena Sahdala HN, Mahgoub A, Cipher D, Siddiqui AA (2011) Long-term use of angiotensin converting enzyme inhibitors is associated with decreased incidence of advanced adenomatous colon polyps. J Clin Gastroenterol 45(2):e12–e16

    Article  PubMed  CAS  Google Scholar 

  19. Yayama K, Miyagi R, Sugiyama K, Sugaya T, Fukamizu A, Okamoto H (2008) Angiotensin II regulates liver regeneration via type 1 receptor following partial hepatectomy in mice. Biol Pharm Bull 31(7):1356–1361

    Article  PubMed  CAS  Google Scholar 

  20. Yayama K, Sugiyama K, Miyagi R, Okamoto H (2007) Angiotensin-converting enzyme inhibitor enhances liver regeneration following partial hepatectomy: involvement of bradykinin B2 and angiotensin AT1 receptors. Biol Pharm Bull 30(3):591–594

    Article  PubMed  CAS  Google Scholar 

  21. Ramalho FS, Ramalho LN, Castro ESJO, Zucoloto S, Correa FM (2001) Angiotensin-converting enzyme inhibition by lisinopril enhances liver regeneration in rats. Braz J Med Biol Res 34(1):125–127

    Article  PubMed  CAS  Google Scholar 

  22. Ramalho FS, Ramalho LN, Castro-e-Silva Junior O, Zucoloto S, Correa FM (2002) Effect of angiotensin-converting enzyme inhibitors on liver regeneration in rats. Hepatogastroenterology 49(47):1347–1351

    PubMed  CAS  Google Scholar 

  23. Ager EI, Neo J, Christophi C (2008) The renin–angiotensin system and malignancy. Carcinogenesis 29(9):1675–1684

    Article  PubMed  CAS  Google Scholar 

  24. Ohta T, Amaya K, Yi S, Kitagawa H, Kayahara M, Ninomiya I et al (2003) Angiotensin converting enzyme-independent, local angiotensin II-generation in human pancreatic ductal cancer tissues. Int J Oncol 23(3):593–598

    PubMed  CAS  Google Scholar 

  25. Sato T, El-Assal ON, Ono T, Yamanoi A, Dhar DK, Nagasue N (2001) Sinusoidal endothelial cell proliferation and expression of angiopoietin/Tie family in regenerating rat liver. J Hepatol 34(5):690–698

    Article  PubMed  CAS  Google Scholar 

  26. Ager EI, Chong WW, Wen SW, Christophi C (2010) Targeting the angiotensin II type 2 receptor (AT2R) in colorectal liver metastases. Cancer Cell Int 10:19

    Article  PubMed Central  PubMed  Google Scholar 

  27. Balabaud C, Bioulac-Sage P, Desmouliere A (2004) The role of hepatic stellate cells in liver regeneration. J Hepatol 40(6):1023–1026

    Article  PubMed  CAS  Google Scholar 

  28. Ramalho FS, Alfany-Fernandez I, Casillas-Ramirez A, Massip-Salcedo M, Serafin A, Rimola A et al (2008) Are Angiotensin II receptor antagonists useful strategies in steatotic and non-steatotic livers in conditions of partial hepatectomy under ischemia-reperfusion? J Pharmacol Exp Ther 329(1):130–140

    Article  PubMed  Google Scholar 

  29. Ramalho LN, Zucoloto S, Ramalho FS, Castro-e-Silva O Jr, Correa FM (2003) Effect of antihypertensive agents on stellate cells during liver regeneration in rats. Arq Gastroenterol 40(1):40–44

    Article  PubMed  Google Scholar 

  30. Harun N, Costa P, Christophi C (2014) Tumour growth stimulation following partial hepatectomy in mice is associated with increased upregulation of c-Met. Clin Exp Metastasis 31(1):1–14

    Google Scholar 

  31. Stahlberg AKM, Pfaffl M (2004) Comparison of reverse transcriptases in gene expression analysis. Clin Chem 50(9):1678–1680

    Article  PubMed  CAS  Google Scholar 

  32. Pfaffl M (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  33. Koh SL, Ager E, Malcontenti-Wilson C, Muralidharan V, Christophi C (2013) Blockade of the renin–angiotensin system improves the early stages of liver regeneration and liver function. J Surg Res 179(1):66–71

    Article  PubMed  CAS  Google Scholar 

  34. O’Reilly MS, Boehm T, Shing Y, Fukai N, Vasios G, Lane WS et al (1997) Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell 88(2):277–285

    Article  PubMed  Google Scholar 

  35. de Groot-Besseling RR, Ruers TJ, van Kraats AA, Poelen GJ, Ruiter DJ, de Waal RM, et al. (2004) Anti-tumor activity of a combination of plasminogen activator and captopril in a human melanoma xenograft model. Int J Cancer 112(2):329–334 [Research Support, Non-U.S. Gov’t]

    Google Scholar 

  36. Oliner J, Min H, Leal J, Yu D, Rao S, You E et al (2004) Suppression of angiogenesis and tumor growth by selective inhibition of angiopoietin-2. Cancer Cell 6(5):507–516

    Article  PubMed  CAS  Google Scholar 

  37. Heffelfinger SC (2007) The renin angiotensin system in the regulation of angiogenesis. Curr Pharm Des 13(12):1215–1229

    Article  PubMed  CAS  Google Scholar 

  38. Gately S, Twardowski P, Stack MS, Cundiff DL, Grella D, Castellino FJ, et al. (1997) The mechanism of cancer-mediated conversion of plasminogen to the angiogenesis inhibitor angiostatin. Proceedings of the National Academy of Sciences of the United States of America. 94(20):10868–10872 [Research Support, Non-U.S. Gov’t Research Support, U.S. Gov’t, Non-P.H.S. Research Support, U.S. Gov’t, P.H.S.]

  39. Yoshiji H, Noguchi R, Kuriyama S, Yoshii J, Ikenaka Y, Yanase K et al (2005) Suppression of renin–angiotensin system attenuates hepatocarcinogenesis via angiogenesis inhibition in rats. Anticancer Res 25(5):3335–3340

    PubMed  CAS  Google Scholar 

  40. Barugel ME, Vargas C, Krygier Waltier G (2009) Metastatic colorectal cancer: recent advances in its clinical management. Expert Rev Anticancer Ther 9(12):1829–1847

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by Austin Health Medical Research Foundation, The University of Melbourne, Australian Rotary Health, Priority-driven Collaborative Cancer Research Scheme and the Cancer Council of Victoria. Dr. Ager was supported by an NHMRC post-doctoral training fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shir Lin Koh.

Additional information

This work was supported by Austin Health Medical Research Foundation, The University of Melbourne, Australian Rotary Health, Priority-driven Collaborative Cancer Research Scheme and the Cancer Council of Victoria. Dr. Ager was supported by an NHMRC post-doctoral training fellowship. There are no financial disclosures from any authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 31 kb)

Supplementary material 2 (PPTX 1293 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koh, S.L., Ager, E.I., Costa, P.L.N. et al. Blockade of the renin–angiotensin system inhibits growth of colorectal cancer liver metastases in the regenerating liver. Clin Exp Metastasis 31, 395–405 (2014). https://doi.org/10.1007/s10585-014-9635-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-014-9635-8

Keywords

Navigation