Skip to main content

Advertisement

Log in

The coagulome and the oncomir: impact of cancer-associated haemostatic dysregulation on the risk of metastasis

  • Research Paper
  • Published:
Clinical & Experimental Metastasis Aims and scope Submit manuscript

Abstract

Patients with cancer are at high risk of both thromboembolic and haemorrhagic events during the course of their disease. The pathogenesis of haemostatic dysfunction in cancer is complex and involves the interplay of multiple factors. There is growing evidence that interactions between malignancies and the coagulation system are not random but can represent coordinated and clinically-significant adaptations that enhance tumour cell survival, proliferation and metastatic potential. A detailed understanding of the interactions between the haemostatic systems and the pathophysiology of metastasis may not only provide insight into strategies that could potentially reduce the incidence of thrombohaemorrhagic events and complications, but could also help design strategies that are capable of modifying tumour biology, progression and metastatic potential in ways that could enhance anticancer therapies and thereby improve overall survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Falanga A, Russo L, Verzeroli C (2013) Mechanisms of thrombosis in cancer. Thromb Res 131(Suppl 1):S59–S62

    Article  PubMed  CAS  Google Scholar 

  2. Guyatt GH, Eikelboom JW, Gould MK, Garcia DA, Crowther M, Murad MH et al (2012) Approach to outcome measurement in the prevention of thrombosis in surgical and medical patients: Antithrombotic Therapy and Prevention of Thrombosis, 9th ed: American College of chest physicians evidence-based clinical practice guidelines. Chest 141(2 Suppl):e185S–e194S

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Lyman GH, Kuderer NM (2010) Prevention and treatment of venous thromboembolism among patients with cancer: the American Society of Clinical Oncology Guidelines. Thromb Res 125(Suppl 2):S120–S127

    Article  PubMed  Google Scholar 

  4. Siragusa S, Armani U, Carpenedo M, Falanga A, Fulfaro F, Imberti D et al (2012) Prevention of venous thromboembolism in patients with cancer: guidelines of the Italian society for haemostasis and thrombosis (SISET)(1). Thromb Res 129(5):e171–e176

    Article  PubMed  CAS  Google Scholar 

  5. Mandala M, Falanga A, Roila F (2011) Management of venous thromboembolism (VTE) in cancer patients: ESMO clinical practice guidelines. Ann Oncol 22(Suppl 6):vi85–vi92

    PubMed  Google Scholar 

  6. Council NHaMR (2011) Stop the Clot: integrating VTE prevention guideline recommendations into routine hospital care, 3rd edn. National Health and Medical Research Council, Melbourne

    Google Scholar 

  7. NCCN (2011) NCCN guidelines version 2.2011 Venous thromboembolic disease. NCCN Guidelines. Version 2.2011

  8. Sites BD, Chan VW, Neal JM, Weller R, Grau T, Koscielniak-Nielsen ZJ et al (2010) The American Society of regional anesthesia and pain medicine and the European society of regional anaesthesia and pain therapy joint committee recommendations for education and training in ultrasound-guided regional anesthesia. Reg Anesth Pain Med 35(2 Suppl):S74–S80

    Article  PubMed  Google Scholar 

  9. Gould MK, Garcia DA, Wren SM, Karanicolas PJ, Arcelus JI, Heit JA et al (2012) Prevention of VTE in nonorthopedic surgical patients: antithrombotic therapy and prevention of thrombosis, 9th ed: American college of chest physicians evidence-based clinical practice guidelines. Chest 141(2 Suppl):e227S–e277S

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Kearon C, Akl EA, Comerota AJ, Prandoni P, Bounameaux H, Goldhaber SZ et al (2012) Antithrombotic therapy for VTE disease: antithrombotic therapy and prevention of thrombosis, 9th ed: American college of chest physicians evidence-based clinical practice guidelines. Chest 141(2 Suppl):e419S–e494S

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Lyman GH, Khorana AA, Kuderer NM, Lee AY, Arcelus JI, Balaban EP et al (2013) Venous thromboembolism prophylaxis and treatment in patients with cancer: American Society of Clinical Oncology clinical practice guideline update. J Clin Oncol 31(17):2189–2204

    Article  PubMed  CAS  Google Scholar 

  12. Stassen JM, Arnout J, Deckmyn H (2004) The hemostatic system. Curr Med Chem 11(17):2245–2260

    Article  PubMed  CAS  Google Scholar 

  13. Versteeg HH, Heemskerk JW, Levi M, Reitsma PH (2013) New fundamentals in hemostasis. Physiol Rev 93(1):327–358

    Article  PubMed  CAS  Google Scholar 

  14. Agnelli G, Verso M, Ageno W, Imberti D, Moia M, Palareti G et al (2008) The MASTER registry on venous thromboembolism: description of the study cohort. Thromb Res 121(5):605–610

    Article  PubMed  CAS  Google Scholar 

  15. Khorana AA, Francis CW, Culakova E, Kuderer NM, Lyman GH (2007) Frequency, risk factors, and trends for venous thromboembolism among hospitalized cancer patients. Cancer 110(10):2339–2346

    Article  PubMed  Google Scholar 

  16. Otten HM, Prins MH, Smorenburg SM, Hutten BA (2000) Risk assessment and prophylaxis of venous thromboembolism in non-surgical patients: cancer as a risk factor. Haemostasis 30(Suppl 2):72–76 (discussion 63)

    PubMed  Google Scholar 

  17. Chew HK, Wun T, Harvey D, Zhou H, White RH (2006) Incidence of venous thromboembolism and its effect on survival among patients with common cancers. Arch Intern Med 166(4):458–464

    Article  PubMed  Google Scholar 

  18. Alcalay A, Wun T, Khatri V, Chew HK, Harvey D, Zhou H et al (2006) Venous thromboembolism in patients with colorectal cancer: incidence and effect on survival. J Clin Oncol 24(7):1112–1118

    Article  PubMed  Google Scholar 

  19. Le Roux PY, Burbury K, Hofman MS, Hicks RJ (2016) Short and long-term prognostic implications of a low embolic burden in oncology patients diagnosed with symptomatic pulmonary embolism. Ann Hematol 95(4):651–652

    Article  PubMed  Google Scholar 

  20. Lyman GH (2014) Impact of venous thromboembolism on survival in patients with advanced cancer: an unmet clinical need. Intern Emerg Med 9(5):497–499

    Article  PubMed  Google Scholar 

  21. Kuderer NM, Ortel TL, Francis CW (2009) Impact of venous thromboembolism and anticoagulation on cancer and cancer survival. J Clin Oncol 27(29):4902–4911

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Ruf W, Mueller BM (2006) Thrombin generation and the pathogenesis of cancer. Semin Thromb Hemost 32(Suppl 1):61–68

    Article  PubMed  CAS  Google Scholar 

  23. Rickles FR, Patierno S, Fernandez PM (2003) Tissue factor, thrombin, and cancer. Chest 124(3 Suppl):58S–68S

    Article  PubMed  CAS  Google Scholar 

  24. Carrier M, Prandoni P (2017) Controversies in the management of cancer-associated thrombosis. Expert Rev Hematol 10(1):15–22

    Article  PubMed  CAS  Google Scholar 

  25. Prandoni P, Lensing AW, Piccioli A, Bernardi E, Simioni P, Girolami B et al (2002) Recurrent venous thromboembolism and bleeding complications during anticoagulant treatment in patients with cancer and venous thrombosis. Blood 100(10):3484–3488

    Article  PubMed  CAS  Google Scholar 

  26. Carrier M, Khorana AA, Zwicker J, Noble S, Lee AY, Subcommittee on H et al (2013) Management of challenging cases of patients with cancer-associated thrombosis including recurrent thrombosis and bleeding: guidance from the SSC of the ISTH. J Thromb Haemost 11(9):1760–1765

    Article  PubMed  CAS  Google Scholar 

  27. Falanga A, Marchetti M, Vignoli A (2013) Coagulation and cancer: biological and clinical aspects. J Thromb Haemost 11(2):223–233

    Article  PubMed  CAS  Google Scholar 

  28. Khorana AA (2012) Risk assessment for cancer-associated thrombosis: what is the best approach? Thromb Res 129(Suppl 1):S10–S15

    Article  PubMed  CAS  Google Scholar 

  29. Ruf W, Yokota N, Schaffner F (2010) Tissue factor in cancer progression and angiogenesis. Thromb Res 125(Suppl 2):S36–S38

    Article  PubMed  Google Scholar 

  30. Ruf W, Disse J, Carneiro-Lobo TC, Yokota N, Schaffner F (2011) Tissue factor and cell signalling in cancer progression and thrombosis. J Thromb Haemost 9(Suppl 1):306–315

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Schaffner F, Yokota N, Ruf W (2012) Tissue factor proangiogenic signaling in cancer progression. Thromb Res 129(Suppl 1):S127–S31

    Article  PubMed  CAS  Google Scholar 

  32. van den Berg YW, Osanto S, Reitsma PH, Versteeg HH (2012) The relationship between tissue factor and cancer progression: insights from bench and bedside. Blood 119(4):924–932

    Article  PubMed  CAS  Google Scholar 

  33. Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, Kombrinck KW et al (2007) Tumor cell-associated tissue factor and circulating hemostatic factors cooperate to increase metastatic potential through natural killer cell-dependent and-independent mechanisms. Blood 110(1):133–141

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Mitroulis I, Kambas K, Anyfanti P, Doumas M, Ritis K (2011) The multivalent activity of the tissue factor-thrombin pathway in thrombotic and non-thrombotic disorders as a target for therapeutic intervention. Expert Opin Ther Targets 15(1):75–89

    Article  PubMed  CAS  Google Scholar 

  35. Anand M, Brat DJ (2012) Oncogenic regulation of tissue factor and thrombosis in cancer. Thromb Res 129(Suppl 1):S46–S49

    Article  PubMed  CAS  Google Scholar 

  36. Khorana AA, Ahrendt SA, Ryan CK, Francis CW, Hruban RH, Hu YC et al (2007) Tissue factor expression, angiogenesis, and thrombosis in pancreatic cancer. Clin Cancer Res 13(10):2870–2875

    Article  PubMed  CAS  Google Scholar 

  37. Hron G, Kollars M, Weber H, Sagaster V, Quehenberger P, Eichinger S et al (2007) Tissue factor-positive microparticles: cellular origin and association with coagulation activation in patients with colorectal cancer. Thromb Haemost 97(1):119–123

    PubMed  CAS  Google Scholar 

  38. Keller T, Salge U, Konig H, Dodt J, Heiden M, Seitz R (2001) Tissue factor is the only activator of coagulation in cultured human lung cancer cells. Lung Cancer 31(2–3):171–179

    Article  PubMed  CAS  Google Scholar 

  39. Leppert U, Eisenreich A (2015) The role of tissue factor isoforms in cancer biology. Int J Cancer 137(3):497–503

    Article  PubMed  CAS  Google Scholar 

  40. Kocaturk B, Versteeg HH (2012) Tissue factor isoforms in cancer and coagulation: may the best isoform win. Thromb Res 129(Suppl 1):S69–S75

    Article  PubMed  CAS  Google Scholar 

  41. Liu Y, Jiang P, Capkova K, Xue D, Ye L, Sinha SC et al (2011) Tissue factor-activated coagulation cascade in the tumor microenvironment is critical for tumor progression and an effective target for therapy. Cancer Res 71(20):6492–6502

    Article  PubMed  CAS  Google Scholar 

  42. Zhou L, Qi XL, Xu MX, Mao Y, Liu ML, Song HM (2014) Microparticles: new light shed on the understanding of venous thromboembolism. Acta Pharmacol Sin 35(9):1103–1110

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Bucciarelli P, Martinelli I, Artoni A, Passamonti SM, Previtali E, Merati G et al (2012) Circulating microparticles and risk of venous thromboembolism. Thromb Res 129(5):591–597

    Article  PubMed  CAS  Google Scholar 

  44. Geddings JE, Mackman N (2013) Tumor-derived tissue factor-positive microparticles and venous thrombosis in cancer patients. Blood 122(11):1873–1880

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Hernandez C, Orbe J, Roncal C, Alvarez-Hernandez M, Martinez de Lizarrondo S, Alves MT et al (2013) Tissue factor expressed by microparticles is associated with mortality but not with thrombosis in cancer patients. Thrombosis haemostasis 110(3):598–608

    Article  PubMed  CAS  Google Scholar 

  46. Battistelli S, Stefanoni M, Lorenzi B, Dell’avanzato R, Varrone F, Pascucci A et al (2008) Coagulation factor levels in non-metastatic colorectal cancer patients. Int J Biol Markers 23(1):36–41

    Article  CAS  PubMed  Google Scholar 

  47. Alevizopoulos A, Tyritzis S, Leotsakos I, Anastasopoulou I, Pournaras C, Kotsis P et al (2017) Role of coagulation factors in urological malignancy: a prospective, controlled study on prostate, renal and bladder cancer. Int J Urol 24(2):130–136

    Article  PubMed  CAS  Google Scholar 

  48. Nomura S, Niki M, Nisizawa T, Tamaki T, Shimizu M (2015) Microparticles as biomarkers of blood coagulation in cancer. Biomark Cancer 7:51–56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Thaler J, Ay C, Pabinger I (2012) Clinical significance of circulating microparticles for venous thromboembolism in cancer patients. Hamostaseologie 32(2):127–131

    Article  PubMed  CAS  Google Scholar 

  50. Falanga A, Tartari CJ, Marchetti M (2012) Microparticles in tumor progression. Thromb Res 129(Suppl 1):S132–S136

    Article  PubMed  CAS  Google Scholar 

  51. Chen C, Duckworth CA, Fu B, Pritchard DM, Rhodes JM, Yu LG (2014) Circulating galectins-2, -4 and -8 in cancer patients make important contributions to the increased circulation of several cytokines and chemokines that promote angiogenesis and metastasis. Br J Cancer 110(3):741–752

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Posch F, Thaler J, Zlabinger GJ, Konigsbrugge O, Koder S, Zielinski C et al (2016) Soluble vascular endothelial growth factor (sVEGF) and the risk of venous thromboembolism in patients with cancer: results from the vienna cancer and thrombosis study (CATS). Clin Cancer Res 22(1):200–206

    Article  PubMed  CAS  Google Scholar 

  53. Bazzi ZA, Lanoue D, El-Youssef M, Romagnuolo R, Tubman J, Cavallo-Medved D et al (2016) Activated thrombin-activatable fibrinolysis inhibitor (TAFIa) attenuates breast cancer cell metastatic behaviors through inhibition of plasminogen activation and extracellular proteolysis. BMC Cancer 16:328

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Radu CM, Spiezia L, Campello E, Gavasso S, Woodhams B, Simioni P (2013) Thrombin activatable fibrinolysis inhibitor in cancer patients with and without venous thromboembolism. Thromb Res 132(4):484–486

    Article  PubMed  CAS  Google Scholar 

  55. Lal I, Dittus K, Holmes CE (2013) Platelets, coagulation and fibrinolysis in breast cancer progression. Breast Cancer Res 15(4):207

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Unlu B, Versteeg HH (2014) Effects of tumor-expressed coagulation factors on cancer progression and venous thrombosis: is there a key factor? Thromb Res 133(Suppl 2):S76–S84

    Article  PubMed  CAS  Google Scholar 

  57. Magnus N, D’Asti E, Meehan B, Garnier D, Rak J (2014) Oncogenes and the coagulation system—forces that modulate dormant and aggressive states in cancer. Thromb Res 133(Suppl 2):S1–S9

    Article  PubMed  CAS  Google Scholar 

  58. Rak J, Yu JL, Luyendyk J, Mackman N (2006) Oncogenes, trousseau syndrome, and cancer-related changes in the coagulome of mice and humans. Cancer Res 66(22):10643–10646

    Article  PubMed  CAS  Google Scholar 

  59. Stenina OI, Plow EF (2005) MET orchestrates cancer and blood coagulation. Nat Med 11(4):376–377

    Article  PubMed  CAS  Google Scholar 

  60. Yu JL, May L, Lhotak V, Shahrzad S, Shirasawa S, Weitz JI et al (2005) Oncogenic events regulate tissue factor expression in colorectal cancer cells: implications for tumor progression and angiogenesis. Blood 105(4):1734–1741

    Article  PubMed  CAS  Google Scholar 

  61. Magnus N, Garnier D, Rak J (2010) Oncogenic epidermal growth factor receptor up-regulates multiple elements of the tissue factor signaling pathway in human glioma cells. Blood 116(5):815–818

    Article  PubMed  CAS  Google Scholar 

  62. Regina S, Valentin JB, Lachot S, Lemarie E, Rollin J, Gruel Y (2009) Increased tissue factor expression is associated with reduced survival in non-small cell lung cancer and with mutations of TP53 and PTEN. Clin Chem 55(10):1834–1842

    Article  PubMed  CAS  Google Scholar 

  63. Swier N, Versteeg HH (2017) Reciprocal links between venous thromboembolism, coagulation factors and ovarian cancer progression. Thromb Res 150:8–18

    Article  PubMed  CAS  Google Scholar 

  64. Belting M, Ahamed J, Ruf W (2005) Signaling of the tissue factor coagulation pathway in angiogenesis and cancer. Arterioscler Thromb Vasc Biol 25(8):1545–1550

    Article  PubMed  CAS  Google Scholar 

  65. Versteeg HH, Spek CA, Richel DJ, Peppelenbosch MP (2004) Coagulation factors VIIa and Xa inhibit apoptosis and anoikis. Oncogene 23(2):410–417

    Article  PubMed  CAS  Google Scholar 

  66. Levitan N, Dowlati A, Remick SC, Tahsildar HI, Sivinski LD, Beyth R et al (1999) Rates of initial and recurrent thromboembolic disease among patients with malignancy versus those without malignancy. Risk analysis using Medicare claims data. Medicine 78(5):285–291

    Article  PubMed  CAS  Google Scholar 

  67. Kocaturk B, Tieken C, Vreeken D, Unlu B, Engels CC, de Kruijf EM et al (2015) Alternatively spliced tissue factor synergizes with the estrogen receptor pathway in promoting breast cancer progression. J Thromb Haemost 13(9):1683–1693

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. van den Berg YW, Versteeg HH (2010) Alternatively spliced tissue factor. A crippled protein in coagulation or a key player in non-haemostatic processes? Hamostaseologie 30(3):144–149

    Article  PubMed  Google Scholar 

  69. Magnus N, Gerges N, Jabado N, Rak J (2013) Coagulation-related gene expression profile in glioblastoma is defined by molecular disease subtype. J Thromb Haemost 11(6):1197–1200

    Article  PubMed  CAS  Google Scholar 

  70. Seth R, Tai LH, Falls T, de Souza CT, Bell JC, Carrier M et al (2013) Surgical stress promotes the development of cancer metastases by a coagulation-dependent mechanism involving natural killer cells in a murine model. Ann Surg 258(1):158–168

    Article  PubMed  Google Scholar 

  71. Sharma D, Brummel-Ziedins KE, Bouchard BA, Holmes CE (2014) Platelets in tumor progression: a host factor that offers multiple potential targets in the treatment of cancer. J Cell Physiol 229(8):1005–1015

    Article  PubMed  CAS  Google Scholar 

  72. Nash GF (2007) Tissue factor (TF) and vascular endothelial growth factor (VEGF) expression in colorectal cancer: relation with cancer recurrence. Colorectal Dis 9(9):858–859

    Article  PubMed  CAS  Google Scholar 

  73. Roselli M, Mineo TC, Basili S, Mariotti S, Martini F, Bellotti A et al (2003) Vascular endothelial growth factor (VEGF-A) plasma levels in non-small cell lung cancer: relationship with coagulation and platelet activation markers. Thromb Haemost 89(1):177–184

    Article  PubMed  CAS  Google Scholar 

  74. Liu X, Hao L, Zhang S, Ji Y, Zhang Y, Lu X et al (2010) Genetic repression of mouse VEGF expression regulates coagulation cascade. IUBMB Life 62(11):819–824

    Article  PubMed  CAS  Google Scholar 

  75. Milsom CC, Yu JL, Mackman N, Micallef J, Anderson GM, Guha A et al (2008) Tissue factor regulation by epidermal growth factor receptor and epithelial-to-mesenchymal transitions: effect on tumor initiation and angiogenesis. Cancer Res 68(24):10068–10076

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. van den Berg YW, van den Hengel LG, Myers HR, Ayachi O, Jordanova E, Ruf W et al (2009) Alternatively spliced tissue factor induces angiogenesis through integrin ligation. Proc Natl Acad Sci USA 106(46):19497–19502

    Article  PubMed  Google Scholar 

  77. Kocaturk B, Versteeg HH (2013) Tissue factor-integrin interactions in cancer and thrombosis: every Jack has his Jill. J Thromb Haemost 11(Suppl 1):285–293

    Article  PubMed  Google Scholar 

  78. Giakoustidis A, Mudan S, Hagemann T (2015) Tumour microenvironment: overview with an emphasis on the colorectal liver metastasis pathway. Cancer Microenviron 8(3):177–186

    Article  PubMed  CAS  Google Scholar 

  79. Wu B, Zhou H, Hu L, Mu Y, Wu Y (2013) Involvement of PKCalpha activation in TF/VIIa/PAR2-induced proliferation, migration, and survival of colon cancer cell SW620. Tumour Biol 34(2):837–846

    Article  PubMed  CAS  Google Scholar 

  80. Wu Y, Zhang X, Zhou H, Chen D, Xie H, Mu Y et al (2013) Factor VIIa regulates the expression of caspase-3, MMP-9, and CD44 in SW620 colon cancer cells involving PAR2/MAPKs/NF-kappaB signaling pathways. Cancer Invest 31(1):7–16

    Article  PubMed  CAS  Google Scholar 

  81. Aberg M, Johnell M, Wickstrom M, Siegbahn A (2011) Tissue factor/FVIIa prevents the extrinsic pathway of apoptosis by regulation of the tumor suppressor death-associated protein kinase 1 (DAPK1). Thromb Res 127(2):141–148

    Article  PubMed  CAS  Google Scholar 

  82. Hobbs SD, Haggart P, Fegan C, Bradbury AW, Adam DJ (2007) The role of tissue factor in patients undergoing open repair of ruptured and nonruptured abdominal aortic aneurysms. J Vasc Surg 46(4):682–686

    Article  PubMed  Google Scholar 

  83. Hobbs JE, Zakarija A, Cundiff DL, Doll JA, Hymen E, Cornwell M et al (2007) Alternatively spliced human tissue factor promotes tumor growth and angiogenesis in a pancreatic cancer tumor model. Thromb Res 120(Suppl 2):S13–S21

    Article  PubMed  Google Scholar 

  84. Degen JL, Palumbo JS (2012) Hemostatic factors, innate immunity and malignancy. Thromb Res 129(Suppl 1):S1–S5

    Article  PubMed  CAS  Google Scholar 

  85. Gil-Bernabe AM, Ferjancic S, Tlalka M, Zhao L, Allen PD, Im JH et al (2012) Recruitment of monocytes/macrophages by tissue factor-mediated coagulation is essential for metastatic cell survival and premetastatic niche establishment in mice. Blood 119(13):3164–3175

    Article  PubMed  CAS  Google Scholar 

  86. Bystricky B, Reuben JM, Mego M (2017) Circulating tumor cells and coagulation-minireview. Crit Rev Oncol/Hematol 114:33–42

    Article  Google Scholar 

  87. Liu Y, Cao X (2016) Characteristics and significance of the pre-metastatic Niche. Cancer cell 30(5):668–681

    Article  PubMed  CAS  Google Scholar 

  88. Martin OA, Anderson RL, Narayan K, MacManus MP (2017) Does the mobilization of circulating tumour cells during cancer therapy cause metastasis? Nat Rev Clin Oncol 14(1):32–44

    Article  PubMed  CAS  Google Scholar 

  89. Alexander M, Kirsa S, Wolfe R, MacManus M, Ball D, Solomon B et al (2014) Thromboembolism in lung cancer—an area of urgent unmet need. Lung Cancer 84(3):275–280

    Article  PubMed  CAS  Google Scholar 

  90. Bystricky B, Cierna Z, Sieberova G, Janega P, Karaba M, Minarik G et al (2017) Relationship between circulating tumor cells and annexin A2 in early breast cancer patients. Anticancer Res 37(5):2727–2734

    Article  PubMed  Google Scholar 

  91. Mitrugno A, Tormoen GW, Kuhn P, McCarty OJ (2016) The prothrombotic activity of cancer cells in the circulation. Blood Rev 30(1):11–19

    Article  PubMed  CAS  Google Scholar 

  92. Tormoen GW, Haley KM, Levine RL, McCarty OJ (2012) Do circulating tumor cells play a role in coagulation and thrombosis? Front Oncol 2:115

    PubMed  PubMed Central  Google Scholar 

  93. Carr ME Jr, Sajer SA, Spaulding A (1992) Fibrin coating of bladder tumor cells (T24) is not protective against LAK cell cytotoxicity. J Lab Clin Med 119(2):132–138

    PubMed  Google Scholar 

  94. Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, Kombrinck KW et al (2005) Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 105(1):178–185

    Article  PubMed  CAS  Google Scholar 

  95. Choi JW, Kim JK, Yang YJ, Kim P, Yoon KH, Yun SH (2015) Urokinase exerts antimetastatic effects by dissociating clusters of circulating tumor cells. Cancer Res 75(21):4474–4482

    Article  PubMed  CAS  Google Scholar 

  96. Maestro LM, Sastre J, Rafael SB, Veganzones SB, Vidaurreta M, Martin M et al (2009) Circulating tumor cells in solid tumor in metastatic and localized stages. Anticancer Res 29(11):4839–4843

    PubMed  Google Scholar 

  97. Zhang N, Lou W, Ji F, Qiu L, Tsang BK, Di W (2016) Low molecular weight heparin and cancer survival: clinical trials and experimental mechanisms. J Cancer Res Clin Oncol 142(8):1807–1816

    Article  PubMed  CAS  Google Scholar 

  98. Kakkar AK (2005) Low-molecular-weight heparin and survival in patients with malignant disease. Cancer Control 12(Suppl 1):22–30

    Article  PubMed  Google Scholar 

  99. Klerk CP, Smorenburg SM, Otten HM, Lensing AW, Prins MH, Piovella F et al (2005) The effect of low molecular weight heparin on survival in patients with advanced malignancy. J Clin Oncol 23(10):2130–2135

    Article  PubMed  CAS  Google Scholar 

  100. Lee AY, Rickles FR, Julian JA, Gent M, Baker RI, Bowden C et al (2005) Randomized comparison of low molecular weight heparin and coumarin derivatives on the survival of patients with cancer and venous thromboembolism. J Clin Oncol 23(10):2123–2129

    Article  PubMed  CAS  Google Scholar 

  101. Noble S (2012) Low-molecular-weight heparin and survival in lung cancer. Thromb Res 129(Suppl 1):S114–S118

    Article  PubMed  CAS  Google Scholar 

  102. Reddy GK, Jain VK, Deitcher S (2004) Incidence of thromboembolism and role of low molecular weight heparin in prolonging survival in patients with advanced malignancies. Support Cancer Ther 2(1):18–20

    Article  PubMed  Google Scholar 

  103. van Doormaal FF, Di Nisio M, Otten HM, Richel DJ, Prins M, Buller HR (2011) Randomized trial of the effect of the low molecular weight heparin nadroparin on survival in patients with cancer. J Clin Oncol 29(15):2071–2076

    Article  PubMed  CAS  Google Scholar 

  104. von Delius S, Ayvaz M, Wagenpfeil S, Eckel F, Schmid RM, Lersch C (2007) Effect of low-molecular-weight heparin on survival in patients with advanced pancreatic adenocarcinoma. Thromb Haemost 98(2):434–439

    Google Scholar 

  105. Sanford D, Naidu A, Alizadeh N, Lazo-Langner A (2014) The effect of low molecular weight heparin on survival in cancer patients: an updated systematic review and meta-analysis of randomized trials. J Thromb Haemost 12(7):1076–1085

    Article  PubMed  CAS  Google Scholar 

  106. Akl EA, Kahale L, Neumann I, Barba M, Sperati F, Terrenato I et al (2014) Anticoagulation for the initial treatment of venous thromboembolism in patients with cancer. Cochrane Database Syst Rev 6(6):CD006649

    Google Scholar 

  107. Tardy B, Chalayer E, Chapelle C, Mismetti P (2014) The effect of low molecular weight heparin on survival in cancer patients: an updated systematic review and meta-analysis of randomized trials: comment. J Thromb Haemost 12(9):1572–1573

    Article  PubMed  CAS  Google Scholar 

  108. Lazo-Langner A, Goss GD, Spaans JN, Rodger MA (2007) The effect of low-molecular-weight heparin on cancer survival. A systematic review and meta-analysis of randomized trials. J Thromb Haemost 5(4):729–737

    Article  PubMed  CAS  Google Scholar 

  109. Di Nisio M, Rutjes AW (2016) Low-molecular-weight heparin for the treatment of acute venous thromboembolism in patients with active cancer. Evid Based Med 21(2):66

    Article  PubMed  Google Scholar 

  110. Rothwell PM (2013) Aspirin in prevention of sporadic colorectal cancer: current clinical evidence and overall balance of risks and benefits. Recent Results Cancer Res 191:121–142

    Article  PubMed  CAS  Google Scholar 

  111. Rothwell PM, Wilson M, Price JF, Belch JF, Meade TW, Mehta Z (2012) Effect of daily aspirin on risk of cancer metastasis: a study of incident cancers during randomised controlled trials. Lancet 379(9826):1591–1601

    Article  PubMed  CAS  Google Scholar 

  112. Rothwell PM, Price JF, Fowkes FG, Zanchetti A, Roncaglioni MC, Tognoni G et al (2012) Short-term effects of daily aspirin on cancer incidence, mortality, and non-vascular death: analysis of the time course of risks and benefits in 51 randomised controlled trials. Lancet 379(9826):1602–1612

    Article  PubMed  CAS  Google Scholar 

  113. Algra AM, Rothwell PM (2012) Effects of regular aspirin on long-term cancer incidence and metastasis: a systematic comparison of evidence from observational studies versus randomised trials. Lancet Oncol 13(5):518–527

    Article  PubMed  CAS  Google Scholar 

  114. Rothwell PM, Fowkes FG, Belch JF, Ogawa H, Warlow CP, Meade TW (2011) Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet 377(9759):31–41

    Article  PubMed  CAS  Google Scholar 

  115. Rothwell PM, Wilson M, Elwin CE, Norrving B, Algra A, Warlow CP et al (2010) Long-term effect of aspirin on colorectal cancer incidence and mortality: 20-year follow-up of five randomised trials. Lancet 376(9754):1741–1750

    Article  PubMed  CAS  Google Scholar 

  116. Luo T, Yan HM, He P, Luo Y, Yang YF, Zheng H (2012) Aspirin use and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 131(2):581–587

    Article  PubMed  CAS  Google Scholar 

  117. Coyle C, Cafferty FH, Langley RE (2016) Aspirin and colorectal cancer prevention and treatment: is it for everyone? Curr Colorectal Cancer Rep 12:27–34

    Article  PubMed  PubMed Central  Google Scholar 

  118. Brown JR, DuBois RN (2005) COX-2: a molecular target for colorectal cancer prevention. J Clin Oncol 23(12):2840–2855

    Article  PubMed  CAS  Google Scholar 

  119. Chan AT, Ogino S, Fuchs CS (2007) Aspirin and the risk of colorectal cancer in relation to the expression of COX-2. N Engl J Med 356(21):2131–2142

    Article  PubMed  CAS  Google Scholar 

  120. Ueda K, Inoue S, Zhang Y, Kutsuna T, Inoue S, Noto K et al (2009) Heparin induces apoptosis through suppression of AKt in oral squamous cell carcinoma cells. Anticancer Res 29(4):1079–1088

    PubMed  CAS  Google Scholar 

  121. Fluhr H, Seitz T, Zygmunt M (2013) Heparins modulate the IFN-gamma-induced production of chemokines in human breast cancer cells. Breast Cancer Res Treat 137(1):109–118

    Article  PubMed  CAS  Google Scholar 

  122. Schmitz P, Gerber U, Schutze N, Jungel E, Blaheta R, Naggi A et al (2013) Cyr61 is a target for heparin in reducing MV3 melanoma cell adhesion and migration via the integrin VLA-4. Thromb Haemost 110(5):1046–1054

    PubMed  CAS  Google Scholar 

  123. Carmazzi Y, Iorio M, Armani C, Cianchetti S, Raggi F, Neri T et al (2012) The mechanisms of nadroparin-mediated inhibition of proliferation of two human lung cancer cell lines. Cell Prolif 45(6):545–556

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Benjamin Blyth for providing Figure.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kate Burbury.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burbury, K., MacManus, M.P. The coagulome and the oncomir: impact of cancer-associated haemostatic dysregulation on the risk of metastasis. Clin Exp Metastasis 35, 237–246 (2018). https://doi.org/10.1007/s10585-018-9875-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10585-018-9875-0

Keywords

Navigation