Skip to main content
Log in

Genetically effective population sizes of Antarctic seals estimated from nuclear genes

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

We analyzed eight nuclear microsatellite loci in three species of Antarctic seals; Weddell seal (Leptonychotes weddellii; mean N = 163), crabeater seal (Lobodon carcinophaga; 138) and Ross seal (Ommatophoca rossii; 35). We estimated genetic diversity (Θ) and effective population size (N E) for each species. Autosomal microsatellite based N E estimates were 151,200 for Weddell seals, 880,200 for crabeater seals, and 254,500 for Ross seals. We screened one X-linked microsatellite (Lw18), which yielded similar N E estimates to the autosomal loci for all species except the Ross seals, where it was considerably larger (~103 times). Microsatellite N E estimates were comparable with previously published N E estimates from mitochondrial DNA, but both are substantially lower than direct estimates of population size in all species except the Ross seals. The ratio of maternally versus biparentally derived estimates of N E for Ross seals was not consistent with the hypothesis that they are a polygynous species. We found no sign of a recent, sustained genetic bottleneck in any of the species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Amos W, Hutter CM, Schug MD, Aquadro CF (2003) Directional evolution of size coupled with ascertainment bias for variation in Drosophila microsatellites. Mol Biol Evol 20:660–662

    Article  PubMed  CAS  Google Scholar 

  • Andolfatto P (2001) Contrasting patterns of X-linked and autosomal nucleotide variation in Drosophila melanogaster and Drosophila simulans. Mol Biol Evol 18:279–290

    PubMed  CAS  Google Scholar 

  • Arnason U, Gullberg A, Janke A, Kullberg M, Lehman N, Petrov EA, Vainola R (2006) Pinniped phylogeny and a new hypothesis for their origin and dispersal. Mol Phylogenet Evol 41:345–354

    Article  PubMed  Google Scholar 

  • Barker JS, Frydenberg J, Gonzalez J, Davies HI, Ruiz A, Sorensen JG, Loeschcke V (2009) Bottlenecks, population differentiation and apparent selection at microsatellite loci in Australian Drosophila buzzatti. Heredity 102:389–401

    Article  PubMed  CAS  Google Scholar 

  • Bartsh SS, Johnston SD, Siniff DB (1992) Territorial behavior and breeding frequency of male Weddell seals (Leptonychotes weddellii) in relation to age, size, and concentrations of serum testosterone and cortisol. Can J Zool 70:680–692

    Article  CAS  Google Scholar 

  • Bazin E, Glemin S, Galtier N (2006) Population size does not influence mitochondrial genetic diversity in animals. Science 312:570–572

    Article  PubMed  CAS  Google Scholar 

  • Bengtson JL, Laake JL, Boveng PL, Cameron MF, Hanson MB, Stewart BS (2011) Distribution, density, and abundance of pack-ice seals in the Amundsen and Ross Seas, Antarctica. Deep-Sea Res II 58:1261–1267

    Google Scholar 

  • Betancourt AJ, Kim Y, Orr HA (2004) A pseudohitchhiking model of X vs autosomal diversity. Genetics 168:2261–2269

    Article  PubMed  Google Scholar 

  • Blix AS, Nordøy ES (2007) Ross seal (Ommatophoca rossii) annual distribution, diving behaviour, breeding and moulting, off Queen Maud Land, Antarctica. Polar Biol 30:1449–1458

    Article  Google Scholar 

  • Burg TM, Trites AW, Smith MJ (1999) Mitochondrial and microsatellite DNA analyses of harbour seal population structure in the northeast Pacific Ocean. Can J Zool 77:930–943

    Article  CAS  Google Scholar 

  • Cameron MF, Siniff DB (2004) Age-specific survival, abundance, and immigration rates of a Weddell seal (Leptonychotes weddellii) population in McMurdo Sound, Antarctica. Can J Zool 82:601–615

    Article  Google Scholar 

  • Caudron AK, Negro SS, Fowler M, Boren L, Poncin P, Robertson BC, Gemmell NJ (2010) Alternative mating tactics in the New Zealand fur seal (Arctocephalus forsteri): when non-territorial males are successful too. Aust J Zool 57:409–421

    Article  Google Scholar 

  • Coltman DW, Bowen WD, Wright JM (1996) PCR primers for harbour seal (Phoca vitulina concolour) microsatellites amplify polymorphic loci in other pinniped species. Mol Ecol 5:161–163

    Article  PubMed  CAS  Google Scholar 

  • Crawford AM, Cuthbertson RP (1996) Mutations in sheep microsatellites. Genome Res 6:876–879

    Article  PubMed  CAS  Google Scholar 

  • Curtis C, Stewart BS, Karl SA (2007) Sexing pinnipeds with ZFX and ZFY loci. J Hered 98:280–285

    Article  PubMed  CAS  Google Scholar 

  • Curtis C, Stewart BS, Karl SA (2009) Pleistocene population expansions of Antarctic pack-ice seals. Mol Ecol 18:2112–2121

    Article  PubMed  Google Scholar 

  • Dallas JF (1992) Estimation of microsatellite mutation rates in recombinant inbred strains of mouse. Mamm Genome 3:452–456

    Article  PubMed  CAS  Google Scholar 

  • Davis CS, Stirling I, Strobeck C (2000) Genetic diversity of Antarctic pack ice seals in relation to life history characteristics. In: Davison W, Howard-Williams P, Broady P (eds) Antarctic ecosystems: models for a wider ecological understanding. Caxton Press, Christchurch, New Zealand, pp 56–62

    Google Scholar 

  • Davis CS, Gelatt TS, Siniff D, Strobeck C (2002) Dinucleotide microsatellite markers from the Antarctic seals and their use in other pinnipeds. Mol Ecol Notes 2:203–208

    CAS  Google Scholar 

  • Davis CS, Stirling I, Strobeck C, Coltman DW (2008) Population structure of ice-breeding seals. Mol Ecol 17:3078–3094

    Article  PubMed  Google Scholar 

  • de Oliveira LR, Hoffman JI, Hingst-Zaher E, Majluf P, Muelbert MMC, Morgante JS, Amos W (2008) Morphological and genetic evidence for two evolutionary significant units (ESUs) in the South American fur seal, Arctocephalus australis. Conserv Genet 9:1451–1466

    Article  Google Scholar 

  • Decker D, Stewart BS, Lehman N (2002) Major histocompatibility complex class II DOA sequences from three Antarctic seal species verify stabilizing selection on the dog locus. Tissu Ant 60:533–537

    Google Scholar 

  • Dib C, Faure S, Fizames C, Samson D, Drouot N, Vignal A, Millasseau P, Marc S, Hazan J, Seboum E, Lathrop M, Gyapay G, Morissette J, Weissenback J (1996) A comprehensive genetic map of the human genome based on 5,264 microsatellites. Nature 380:152–154. Note: the extended reprint is available at www.genoscope.cns.fr/spip/Human-genetic-map-supplementary.html. As of 07/01/2011, however, the mutation rate information is missing

    Google Scholar 

  • Dickerson BR, Ream RR, Vignieri SN, Bentzen P (2010) Population structure as revealed by mtDNA and microsatellites in northern fur seals, Callorhinus ursinus, throughout their range. PLoS ONE 5:e10671

    Article  PubMed  Google Scholar 

  • diRienzo A, Peterson AC, Garza JC, Valdes AM, Slatkin M, Freimer NB (1994) Mutational processes of simple sequence repeat loci in human populations. Proc Natl Acad Sci USA 91:3166–3170

    Article  CAS  Google Scholar 

  • Ellegren H (2000) Microsatellite mutations in the germline: implications for evolutionary inference. Trend Genet 16:551–558

    Article  CAS  Google Scholar 

  • Erickson AW, Hanson MB (1990) Continental estimates and population trends of Antarctic ice seals. In: Kerry KR, Hempel G (eds) Antarctic ecosystems, ecological change, conservation. Springer-Verlag, Berlin and Heidelberg, pp 253–264

    Google Scholar 

  • Estoup A, Angers B (1998) Microsatellite and minisatellites for molecular ecology: theoretical and empirical considerations. In: Carvalho GR (ed) Advances in molecular ecology. IOS Press, Amsterdam, Netherlands, pp 55–86

    Google Scholar 

  • Fabiani A, Galimberti F, Sanvito S, Hoelzel AR (2004) Extreme polygyny among southern elephant seals on Sea Lion Island, Faukland Islands. Behav Ecol 15:961–969

    Article  Google Scholar 

  • Felsenstein J (2005) Accuracy of coalescent likelihood estimates: do we need more sites, more sequence, or more loci? Mol Biol Evol 23:691–700

    Article  PubMed  Google Scholar 

  • Frankham R (1995) Effective population size/adult population size in wildlife: a review. Genet Res 66:95–107

    Article  Google Scholar 

  • Galbusera P, van Dongen S, Matthysen E (2000) Cross-species amplification of microsatellites in passerine birds. Conserv Genet 1:163–168

    Article  CAS  Google Scholar 

  • Gao H, Shengli C, Binlun Y, Baiyao C, Fei Y (2009) Discrepancy variation of dinucleotide microsatellite repeats in eukaryotic genomes. Biol Res 42:365–375

    Article  PubMed  CAS  Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  PubMed  CAS  Google Scholar 

  • Gelatt T, Davis C, Cameron M, Siniff D, Strobeck C (2000) The old and the new: integrating population ecology and population genetics of Weddell seals. In: Davison W, Howard-Williams P, Broady P (eds) Antarctic ecosystems: models for a wider ecological understanding. Caxton Press, Christchurch, New Zealand, pp 63–70

    Google Scholar 

  • Goodman SJ (1998) Patterns of extensive genetic differentiation and variation among European harbor seals (Phoca vitulina vitulina) revealed using DNA microsatellite polymorphisms. Mol Biol Evol 15:104–118

    PubMed  CAS  Google Scholar 

  • Graves JA, Helyar A, Biuw M (2009) Microsatellite and mtDNA anaysis of the population structure of grey seals (Halichoerus grypus) from three breeding areas in the Baltic Sea. Conserv Genet 10:59–68

    Article  CAS  Google Scholar 

  • Han JB, Sun FY, Gao XG, He CB, Wang PL, Ma ZQ (2010) Low microsatellite variation in spotted seal (Phoca largha) shows a decrease in population size in the Liaodong Gulf colony. Ann Zool Fenn 47:15–27

    Google Scholar 

  • Hartl DL, Clark AG (2007) Principles of population genetics, 4th edn. Sinauer Associates, Sunderland, Massachusetts

    Google Scholar 

  • Hayes SA, Pearse DE, Costa D, Harvey JT, LeBoeuf BJ, Garza JC (2006) Mating system and reproductive success in eastern Pacific harbour seals. Mol Ecol 15:3023–3034

    Article  PubMed  CAS  Google Scholar 

  • Hernandez-Velazquez FD, Galindo-Sanchez E, Taylor MI, De La Rosa-Velez J, Cote IM, Schramm Y, Aurioles-Gamboa D, Rico C (2005) New polymorphic microsatellite markers for California sea lions (Zalophus californianus). Mol Ecol Notes 5:140–142

    Article  CAS  Google Scholar 

  • Hey J (2010) Isolation with migration models for more than two populations. Mol Biol Evol 27:905–920

    Article  PubMed  CAS  Google Scholar 

  • Hey J, Nelson R (2004) Multilocus methods for estimating population sizes, migration rates and divergence times, with applications to the divergence of Drosophila pseudoobscura and D. persimilis. Genetics 167:747–760

    Article  PubMed  CAS  Google Scholar 

  • Higdon JW, Bininda-Edmonds ORP, Beck RMD, Ferguson SH (2007) Phylogeny and divergence of the pinnipeds (Carnivora: Mammaila) assessed using a multigene dataset. BMC Evol Biol 7:216

    Article  PubMed  Google Scholar 

  • Hoffman JI (2009) A panel of new microsatellite loci for genetic studies of Antarctic fur seals and other otariids. Conserv Genet 10:989–992

    Article  CAS  Google Scholar 

  • Hoffman JI, Steinfartz S, Wolf JBW (2007) Ten novel dinucleotide microsatellite loci cloned from the Galapagos sea lion (Zalophus californianus wollebaeki) are polymorphic in other pinniped species. Mol Ecol Notes 7:103–105

    Article  CAS  Google Scholar 

  • Hoffman JI, Damsmahaparta KK, Nichols HJ (2008) Ten novel polymorphic dinucleotide microsatellite loci cloned from the Antarctic fur seal Arctocephalus gazella. Mol Ecol Resour 8:459–461

    Article  PubMed  CAS  Google Scholar 

  • Hutter CM, Schug MD, Aquadro CF (1998) Microsatellite variation in Drosophila melanogaster and Drosophila simulans: a reciprocal test of the ascertainment bias hypothesis. Mol Biol Evol 15:1620–1636

    PubMed  CAS  Google Scholar 

  • International Whaling Commission Report, Annex G (2005) Document SC/57/021. Report of the Sub-committee on In-depth Assessment (IA), p 9

  • Kashi Y, Soller M (1999) Functional roles of microsatellites and minisatellites. In: Goldstein DB, Schlötterer C (eds) Microsatellites: evolution, applications. Oxford University Press Ind, New York, pp 10–23

    Google Scholar 

  • Kauer M, Zangerl B, Dieringer D, Schlötterer C (2002) Chromosomal patterns of microsatellite variability contrast sharply in African and non-African populations of Drosophila melanogaster. Genetics 160:247–256

    PubMed  CAS  Google Scholar 

  • Kingston JJ, Gwillium J (2007) Hybridization between two sympatrically breeding species of fur seals at Iles Crozet revealed by genetic analysis. Con Gen 8:1133–1145

    Google Scholar 

  • Kretzmann M, Mentzer L, DiGiovanni R, Leslie MS, Amato G (2006) Microsatellite diversity and fitness in stranded juvenile harp seals (Phoca groenlandica). J Hered 97:555–560

    Article  PubMed  CAS  Google Scholar 

  • Lancaster ML, Arnould JPY, Kirkwood R (2010) Genetic status of an endemic marine mammal, the Australian fur seal, following historical harvesting. Anim Conserv 13:247–255

    Article  Google Scholar 

  • Laws RM (1977) Seals and whales of the Southern Ocean. Philos Trans R Soc Lond B 279:81–96

    Article  Google Scholar 

  • Luikart G, Cornuet J-M (1998) Empirical evaluation of a test for identifying recently bottlenecked populations from allele frequency data. Conserv Biol 12:228–237

    Article  Google Scholar 

  • Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354

    Article  PubMed  CAS  Google Scholar 

  • Palo JU, Makinen HS, Helle E, Stenman O, Vainola R (2001) Microsatellite variation in ringed seals (Phoca hispida): genetic structure and history of the Baltic Sea population. Heredity 86:609–617

    Article  PubMed  CAS  Google Scholar 

  • Palo JU, Hyvärinen H, Helle E, Mäkinen HS, Väinölä R (2003) Postglacial loss of microsatellite variation in the landlocked Lake Saimaa ringed seal. Conserv Genet 4:117–128

    Article  CAS  Google Scholar 

  • Park SDE (2001) Trypanotolerance in West African cattle and the population genetic effects of selection. Ph.D. thesis, University of Dublin

  • Pastor T, Garza JC, Aguilar A, Tounta E, Androukaki E (2007) Genetic diversity and differentiation between the two remaining populations of the critically endangered Mediterranean monk seal. Anim Conserv 10:461–469

    Article  Google Scholar 

  • Payseur BA, Nachman MW (2002) Natural selection at linked sites in humans. Gene 300:31–42

    Article  PubMed  CAS  Google Scholar 

  • Piry S, Luikart G, Cornuet J-M (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Poland VF, Pomeroy PP, Twiss SD, Graves JA (2008) A fine scale study finds limited evidence of kin clustering in a grey seal colony. Mar Mamm Sci 24:371–387

    Article  Google Scholar 

  • Raymond M, Rousset F (1995) GENEPOP (version 1.2): population genetics software for exact tests and ecumenicism. J Hered 86:248–249

    Google Scholar 

  • Riijks JM, Hoffman JI, Kuiken T, Osterhaus ADME, Amos W (2008) Heterozygosity and lungworm burden in harbor seals (Phoca vitulina). Heredity 100:587–593

    Article  Google Scholar 

  • Schlötterer C (2000) Evolutionary dynamics of microsatellite DNA. Chromosoma 109:365–371

    Article  PubMed  Google Scholar 

  • Schultz JK, Baker JD, Toonen RJ, Bowen BW (2009) Extremely low genetic diversity in the endangered Hawaiian monk seal (Monachus schauinslandi). J Hered 100:25–33

    Article  PubMed  CAS  Google Scholar 

  • Scientific Committee for Antarctic Research (2006) Proposal to de-list Antarctic fur seals as specially protected species. Antarctic Treaty Consultative Meeting, 2006. http://www.scar.org/treaty/atcmxxix/atcm29_wp039.pdf

  • Serikawa T, Kuramoto T, Hilbert P, Mori M, Yamada J, Dubay CJ, Lindpainter K, Ganten D, Cuenet JL, Lathrop GM, Beckmann JS (1992) Rat gene mapping using PCR-analyzed microsatellites. Genetics 131:701–721

    PubMed  CAS  Google Scholar 

  • Simonsen BT, Siegismund HR, Arctander P (1998) Population structure of African buffalo inferred from mtDNA sequences and microsatellite loci: high variation but low differentiation. Mol Ecol 7:225–237

    Article  PubMed  CAS  Google Scholar 

  • Siniff DB, Stirling I, Bengston JL, Reichle RA (1979) Social and reproductive behavior of crabeater seals (Lobodon carcinophagus) during the austral spring. Can J Zool 57:2243–2255

    Article  Google Scholar 

  • Southwell C, Paxton CGM, Borchers D, Boveng P, Nordøy ES, Blix ES (2008) Estimating population status under conditions of uncertainty: the Ross seal in east Antarctica. Antarct Sci 20:123–133

    Article  Google Scholar 

  • Southwell C, Bengtson J, Bester M, Blix AS, Bornemann H, Boveng P, Cameron M, Forcada J, Laake J, Nordøy E, Plötz J, Rogers T, Southwell D, Steinhage D, Stewart BS, Trathan P (in press) A review of data on abundance, trends in abundance, habitat use and diet of ice-breeding seals in the Southern Ocean. CCAMLR Sci

  • Stewart BSS (2007) Current status of the Ross seal (Ommatophoca rossii): a specially protected species under Annex II (Appendix I). XXX Antarctic Treaty Consultative Meeting, Scientific Committee on Antarctic Research, May 2007

  • Swanson BJ, Kelly BP, Maddox CK, Moran JR (2006) Shed skin as a source of DNA for genotyping seals. Mol Ecol Notes 6:1006–1009

    Article  CAS  Google Scholar 

  • Szibor R (2007) X-chromosomal markers: past, present and future. Forensic Sci Int Genet 1:93–99

    Article  PubMed  Google Scholar 

  • Twiss SD, Poland VF, Graves JA, Pomeroy PP (2006) Finding fathers: spatio-temporal analysis of paternity assignment in grey seals (Halichoerus grypus). Mol Ecol 15:1939–1953

    Article  PubMed  CAS  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vowles EJ, Amos W (2006) Quantifying ascertainment bias and species-specific length differences in human and chimpanzee microsatellites using genome sequences. Mol Biol Evol 23:598–607

    Article  PubMed  CAS  Google Scholar 

  • Weber JL, Wong C (1993) Mutation of short tandem repeats. Hum Mol Genet 2:1123–1128

    Article  PubMed  CAS  Google Scholar 

  • Wilson EA (1907) Mammalia. Pgs 1–66 in National Antarctic Expedition 1901–1904, Natural History II. Zoology. British Museum, London. vol 2, pt 1

  • Yu N, Fu Y-X, Li W-H (2002) DNA polymorphisms in a worldwide sample of human X chromosomes. Mol Biol Evol 19:2131–2141

    PubMed  CAS  Google Scholar 

  • Yue GH, Beeckmann P, Geldermann H (2002) Mutation rate at swine microsatllite loci. Genetics 114:113–119

    CAS  Google Scholar 

Download references

Acknowledgments

This research was funded by an American Museum of Natural History Lerner-Gray grant to CC, NSF OPP 98-16011 and OPP 98-16035 grants to BSS, and NSF DEB 98-06905 and DEB 03-21924 grants to SAK. Much of the research was conducted in the Department of Biology, University of South Florida (Tampa, FL, USA) in partial fulfillment of the doctoral research of CC. We thank H. Xu for generously providing statistical analysis software and four anonymous reviewers for critical comments. Part of this work was carried out by using the resources of the Computational Biology Service Unit from Cornell University, which is partially funded by Microsoft Corporation. This research was authorized by research permits 976 under the United States Marine Mammal Protection Act and 2000–2001 under The United States Antarctic Conservation Act and was approved by the Institutional Animal Care and Use Committee of Hubbs-SeaWorld Research Institute, which is registered as a Research Facility with the United States Department of Agriculture-Animal and Plant Health Inspection Service. This is SOEST contribution No. 8210 and HIMB contribution No. 1453.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen A. Karl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Curtis, C., Stewart, B.S. & Karl, S.A. Genetically effective population sizes of Antarctic seals estimated from nuclear genes. Conserv Genet 12, 1435–1446 (2011). https://doi.org/10.1007/s10592-011-0241-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-011-0241-x

Keywords

Navigation