Skip to main content

Advertisement

Log in

A complex history of introgression and vicariance in a threatened montane skink (Pseudemoia cryodroma) across an Australian sky island system

  • Research Article
  • Published:
Conservation Genetics Aims and scope Submit manuscript

Abstract

Species endemic to sky island systems are isolated to mountain peaks and high elevation plateaux both geographically and ecologically, making them particularly vulnerable to the effects of climate change. Pressures associated with climate change have already been linked to local extinctions of montane species, emphasizing the importance of understanding the genetic diversity and population connectivity within sky islands systems for the conservation management of remaining populations. Our study focuses on the endangered alpine skink Pseudemoia cryodroma, which is endemic to the Victorian Alps in south-eastern Australia, and has a disjunct distribution in montane habitats above 1100 m a.s.l. Using mitochondrial DNA (mtDNA) and microsatellite loci, we investigated species delimitation, genetic connectivity and population genetic structure across the geographic range of this species. We found discordance between genetic markers, indicating historical mtDNA introgression at one of the study sites between P. cryodroma and the closely related, syntopic P. entrecasteauxii. Molecular diversity was positively associated with site elevation and extent of suitable habitat, with inbreeding detected in three of the five populations. These results demonstrate the complex interaction between geography and habitat in shaping the population structure and genetic diversity of P. cryodroma, and highlight the importance of minimising future habitat loss and fragmentation for the long-term persistence of this species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aljanabi SM, Martinez I (1997) Universal and rapid salt-extraction of high quality genomic DNA for PCR-based techniques. Nucl Acids Res 25:4692–4693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atlas of Living Australia (2014). http://www.ala.org.au

  • Beever EA, Ray C, Wilkening JL, Brussard PF, Mote PW (2011) Contemporary climate change alters the pace and drivers of extinction. Glob Change Biol 17:2054–2070.

    Article  Google Scholar 

  • Beuchat CA (1986) Reproductive influences on the thermoregulatory behavior of a live-bearing lizard. Copeia 1986:971–979

    Article  Google Scholar 

  • Bouckaert R, Heled J, Kuhnert D, Vaughan T, Wu CH, Xie D, Suchard MA, Rambaut A, Drummond AJ (2014) BEAST 2: A Software Platform for Bayesian Evolutionary Analysis. PLoS Comp Biol 10

  • Brereton R, Bennett S, Mansergh I (1995) Enhanced greenhouse climate-change and its potential effect on selected fauna of South-eastern Australia - a trend analysis. Biol Conserv 72:339–354

    Article  Google Scholar 

  • Browne RA, Ferree PM (2007) Genetic structure of southern Appalachian “Sky Island” populations of the southern red-backed vole (Myodes gapperi). J Mammal 88:759–768

    Article  Google Scholar 

  • Cahill AE, Aiello-Lammens ME, Fisher-Reid MC, Hua X, Karanewsky CJ, Yeong Ryu H, Sbeglia GC, Spagnolo F, Waldron JB, Warsi O, Wiens JJ (2013) How does climate change cause extinction? Proc R Soc B 280:20121890

    Article  PubMed  PubMed Central  Google Scholar 

  • Department of Sustainability of Environment (2013) Advisory List of threatened vertebrate Fauna in Victoria. Victorian Government Department of Sustainability and Environment, Melbourne, pp 1–18

    Google Scholar 

  • Earl DA, von Holdt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Res 4:359–361

    Article  Google Scholar 

  • Endo Y, Nash M, Hoffmann AA, Slatyer R, Miller AD (2015) Comparative phylogeography of alpine invertebrates indicates deep lineage diversification and historical refugia in the Australian Alps. J Biogeogr 42:89–102

    Article  Google Scholar 

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Lischer HEL (2010) Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol Res 10:564–567

    Article  Google Scholar 

  • Frankham R (2015) Genetic rescue of small inbred populations: meta-analysis reveals large and consistent benefits of gene flow. Mol Ecol 24:2610–2618

    Article  PubMed  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics 147:915–925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    Article  CAS  PubMed  Google Scholar 

  • Green K, Mansergh IM, Osborne WS (1992) The fauna of the Australian Alps: conservation and management. Rev Geogr Alp 2 & 3:381–407.

    Google Scholar 

  • Haines ML, Moussalli A, Stuart-Fox D, Clemann N, Melville J (2014) Phylogenetic evidence of historic mitochondrial introgression and cryptic diversity in the genus Pseudemoia (Squamata: Scincidae). Mol Phylogenet Evol 81:86–95

    Article  CAS  PubMed  Google Scholar 

  • Haines ML, Melville J, Sumner J, Clemann N, Chapple DG, Stuart-Fox D (2016) Geographic variation in hybridisation and ecological differentiation between three syntopic, morphologically similar species of montane lizards. Mol Ecol 25:2887–2903

    Article  CAS  PubMed  Google Scholar 

  • Heald WF (1951) Sky islands of Arizona. Nat Hist 60:56–63, 95–96.

    Google Scholar 

  • Hedrick PW, Kalinowski ST (2000) Inbreeding depression in conservation biology. Annu Rev Ecol Syst 31:139–162

    Article  Google Scholar 

  • Hennessy K, Whetton P, Smith I, Bathols J, Hutchinson M, Sharples J (2003) The impact of climate change on snow conditions in mainland Australia. CSIRO Atmospheric Research, Aspendale, Victoria, Australia

    Google Scholar 

  • Hutchinson MN, Donnellan SC (1992) Taxonomy and genetic variation in the Australian lizards of the genus Pseudemoia (Scincidae, Lygosominae). J Nat Hist 26:215–264

    Article  Google Scholar 

  • Jacobsson M, Rosenberg NA (2007) CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23:1801–1806

    Article  Google Scholar 

  • Kalinowski ST (2005) HP-Rare 1.0: a computer program for performing rarefaction on measures of allelic richness. Mol Ecol Notes 5:187–189

    Article  CAS  Google Scholar 

  • Knowles LL, Carstens BC (2007) Estimating a geographically explicit model of population divergence. Evol Int J Org Evol 61:477–493

    Article  Google Scholar 

  • Koumoundouros T, Sumner J, Clemann N, Stuart-Fox D (2009) Current genetic isolation and fragmentation contrasts with historical connectivity in an alpine lizard (Cyclodomorphus praealtus) threatened by climate change. Biol Conserv 142:992–1002

    Article  Google Scholar 

  • Lanfear R, Calcott B, Ho SYW, Guindon S (2012) PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Mol Biol Evol 29:1695–1701

    Article  CAS  PubMed  Google Scholar 

  • Mansergh I, Heinze D, Weeks A, Perrin L (2013) Gene-pool mixing: lessons from the high country. Wildl Aust 50:32–35.

    Google Scholar 

  • Markgraf V, McGlone M, Hope G (1995) Neogene paleoenvironmental and paleoclimatic change in southern temperate ecosystems—A southern perspective. Trends Ecol Evol 10:143–147

    Article  CAS  PubMed  Google Scholar 

  • Masta SE (2000) Phylogeography of the jumping spider Habronattus pugillis (Araneae : Salticidae): recent vicariance of sky island populations? Evol Int J Org Evol 54:1699–1711

    Article  CAS  Google Scholar 

  • McCormack JE, Huang H, Knowles LL (2009) Sky islands. In: Gillespie R, Clague D (eds) Encyclopedia of islands. University of California Press, Berkeley, CA, pp 839–843

    Google Scholar 

  • Meirmans PG, Van Tienderen PH (2004) Genotype and Genodive: two programs for the analysis of genetic diversity of asexual organisms. Mol Ecol Notes 4:792–794

    Article  Google Scholar 

  • Mitrovski P, Heinze DA, Broome L, Hoffmann AA, Weeks AR (2007) High levels of variation despite genetic fragmentation in populations of the endangered mountain pygmy-possum, Burramys parvus, in alpine Australia. Mol Ecol 16:75–87

    Article  CAS  PubMed  Google Scholar 

  • Morgan MJ, Hunter D, Pietsch R, Osborne W, Keogh JS (2008) Assessment of genetic diversity in the critically endangered Australian corroboree frogs, Pseudophryne corroboree and Pseudophryne pengilleyi, identifies four evolutionarily significant units for conservation. Mol Ecol 17:3448–3463

    PubMed  Google Scholar 

  • Osborne MJ, Norman JA, Christidis L, Murray ND (2000) Genetic distinctness of isolated populations of an endangered marsupial, the mountain pygmy-possum, Barramys parvus. Mol Ecol 9:609–613

    Article  CAS  PubMed  Google Scholar 

  • Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 421:37–42

    Article  CAS  PubMed  Google Scholar 

  • Peakall R, Smouse PE (2012) GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537–2539

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pemberton JM, Slate J, Bancroft DR, Barrett JA (1995) Nonamplifying alleles at microsatellite loci: a caution for parentage and population studies. Mol Ecol 4:249–252

    Article  CAS  PubMed  Google Scholar 

  • Petit RJ, Aguinagalde I, de Beaulieu J-L, Bittkau C, Brewer S, Cheddadi R, Ennos R, Fineschi S, Grivet D, Lascoux M, Mohanty A, Müller-Starck G, Demesure-Musch B, Palmé A, Martín JP, Rendell S, Vendramin GG (2003) Glacial refugia: hotspots but not melting pots of genetic diversity. Science 300:1563–1565

    Article  CAS  PubMed  Google Scholar 

  • Pickering CM (2007) Climate change and other threats in the Australian Alps. In: Taylor M, Figgis P (eds) Protected areas: buffering nature against climate change. Proceedings of a WWF and IUCN world commission on protected areas symposium, 18–19 June 2007, Canberra, Sydney, pp 28–34

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Article  Google Scholar 

  • Pounds JA, Fogden MPL, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 398:611–615

    Article  CAS  Google Scholar 

  • Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pritchard JK, Wen X, Falush D (2009) Documentation for structure software version 2.3. http://computing.bio.cam.ac.uk/local/doc/structure.pdf

  • Rambaut A, Drummond AJ (2007) Tracer version 1.5. http://beast.bio.ed.ac.uk/Tracer

  • Reed DH, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237

    Article  Google Scholar 

  • Rodríguez F, Pérez T, Hammer SE, Albornoz J, Domínguez A (2010) Integrating phylogeographic patterns of microsatellite and mtDNA divergence to infer the evolutionary history of chamois (genus Rupicapra). BMC Evol Biol 10:1–19

    Article  Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  • Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    Article  CAS  PubMed  Google Scholar 

  • Rubidge EM, Patton JL, Moritz C (2014) Diversification of the Alpine Chipmunk, Tamias alpinus, an alpine endemic of the Sierra Nevada, California. BMC Evol Biol 14:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Rull V, Nogue S (2007) Potential migration routes and barriers for vascular plants of the Neotropical Guyana Highlands during the quaternary. J Biogeogr 34:1327–1341

    Article  Google Scholar 

  • Sato CF, Wood JT, Schroder M, Green K, Osborne WS, Michael DR, Lindenmayer DB (2014a) An experiment to test key hypotheses of the drivers of reptile distribution in subalpine ski resorts. J Appl Ecol 51:13–22

    Article  Google Scholar 

  • Sato CF, Wood JT, Schroder M, Michael DR, Osborne WS, Green K, Lindenmayer DB (2014b) Designing for conservation outcomes: the value of remnant habitat for reptiles on ski runs in subalpine landscapes. Landsc Ecol 29:1225–1236

    Article  Google Scholar 

  • Schoville SD, Roderick GK (2009) Alpine biogeography of Parnassian butterflies during Quaternary climate cycles in North America. Mol Ecol 18:3471–3485

    Article  PubMed  Google Scholar 

  • Shepard DB, Burbrink FT (2008) Lineage diversification and historical demography of a sky island salamander, Plethodon ouachitae, from the Interior Highlands. Mol Ecol 17:5315–5335

    Article  PubMed  Google Scholar 

  • Sinervo B, Mendez-de-la-Cruz F, Miles DB, Heulin B, Bastiaans E, Cruz MVS, Lara-Resendiz R, Martinez-Mendez N, Calderon-Espinosa ML, Meza-Lazaro RN, Gadsden H, Avila LJ, Morando M, De la Riva IJ, Sepulveda PV, Rocha CFD, Ibarguengoytia N, Puntriano CA, Massot M, Lepetz V, Oksanen TA, Chapple DG, Bauer AM, Branch WR, Clobert J, Sites JW (2010) Erosion of lizard diversity by climate change and altered thermal niches. Science 328:894–899

    Article  CAS  PubMed  Google Scholar 

  • Slatyer RA, Nash MA, Miller AD, Endo Y, Umbers KDL, Hoffmann AA (2014) Strong genetic structure corresponds to small-scale geographic breaks in the Australian alpine grasshopper Kosciuscola tristis. BMC Evol Biol 14:204

    Article  PubMed  PubMed Central  Google Scholar 

  • Stapley J, Hayes CM, Keogh JS (2003) Population genetic differentiation and multiple paternity determined by novel microsatellite markers from the Mountain Log Skink (Pseudemoia entrecasteauxii). Mol Ecol Notes 3:291–293

    Article  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatarnic NJ, Umbers KDL, Song H (2013) Molecular phylogeny of the Kosciuscola grasshoppers endemic to the Australian alpine and montane regions. Invertebr Syst 27:307–316

    Google Scholar 

  • Trewick SA, Wallis GP, Morgan-Richards M (2000) Phylogeographical pattern correlates with Pliocene mountain building in the alpine scree weta (Orthoptera, Anostostomatidae). Mol Ecol 9:657–666

    Article  CAS  PubMed  Google Scholar 

  • Van Oosterhout C, Hutchinson WF, Wills DPM, Shipley P (2004) Micro-checker: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538

    Article  Google Scholar 

  • Vandenberg AHM (2010) Paleogene basalts prove early uplift of Victoria’s Eastern Uplands. Aust J Earth Sci 57:291–315

    Article  CAS  Google Scholar 

  • Willi Y, Van Buskirk J, Hoffmann AA (2006) Limits to the adaptive potential of small populations. Annu Rev Ecol Evol Syst 37:433–458.

    Article  Google Scholar 

  • Williams MAJ, Dunkerley D, De Deckker P, Kershaw P, Chappell J (1998) Quaternary Environments. Arnold, London

    Google Scholar 

  • Wilson S, Swan G (2013) A complete guide to reptiles of Australia, 4th edn. New Holland Publishers, Sydney

    Google Scholar 

  • Zimkus BM, Gvozdik V (2013) Sky Islands of the Cameroon Volcanic Line: a diversification hot spot for puddle frogs (Phrynobatrachidae: Phrynobatrachus). Zool Scr 42:591–611.

    Google Scholar 

Download references

Acknowledgements

We thank S. Heap, V. Antony, L. Beilharz, J. de Jong, R. Groenewegen, K. Howard, M. Londsdale, S. Maldonado, V. Miles, and M. Scroggie for assistance with tissue collection and the Department of Environment, Land, Water, and Planning for in-kind support. We also thank A. Moussalli for useful discussions and C. Moritz, C. Schneider, E. Latch, S. Lougheed and two anonymous reviewers for helpful comments that improved the quality of this manuscript. Funding was provided by the Holsworth Wildlife Research Foundation (MLH), Museum Victoria 1854 Student Scholarship (MLH), Dame Margaret Blackwood Soroptimist Scholarship (MLH), Wildlife Preservation Society of Australia (MLH) and Monash University Linkage Project Application Support (LPAS) Grant (DGC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margaret L. Haines.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haines, M.L., Stuart-Fox, D., Sumner, J. et al. A complex history of introgression and vicariance in a threatened montane skink (Pseudemoia cryodroma) across an Australian sky island system. Conserv Genet 18, 939–950 (2017). https://doi.org/10.1007/s10592-017-0945-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10592-017-0945-7

Keywords

Navigation