Skip to main content
Log in

An intermediate-scale model for thermal hydrology in low-relief permafrost-affected landscapes

  • Original Paper
  • Published:
Computational Geosciences Aims and scope Submit manuscript

Abstract

Integrated surface/subsurface models for simulating the thermal hydrology of permafrost-affected regions in a warming climate have recently become available, but computational demands of those new process-rich simu- lation tools have thus far limited their applications to one-dimensional or small two-dimensional simulations. We present a mixed-dimensional model structure for efficiently simulating surface/subsurface thermal hydrology in low-relief permafrost regions at watershed scales. The approach replaces a full three-dimensional system with a two-dimensional overland thermal hydrology system and a family of one-dimensional vertical columns, where each column represents a fully coupled surface/subsurface thermal hydrology system without lateral flow. The system is then operator split, sequentially updating the overland flow system without sources and the one-dimensional columns without lateral flows. We show that the app- roach is highly scalable, supports subcycling of different processes, and compares well with the corresponding fully three-dimensional representation at significantly less computational cost. Those advances enable recently developed representations of freezing soil physics to be coupled with thermal overland flow and surface energy balance at scales of 100s of meters. Although developed and demonstrated for permafrost thermal hydrology, the mixed-dimensional model structure is applicable to integrated surface/subsurface thermal hydrology in general.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown, J., Ferrians, Jr, O., Heginbottom, J., Melnikov, E.: Circum-Arctic map of permafrost and ground-ice conditions, pp. 45 (1997)

  2. Jorgenson, M.T., Racine, C.H., Walters, J.C., Osterkamp, T.E.: Permafrost degradation and ecological changes associated with a warmingclimate in Central Alaska. Clim. Chang. 48, 551–579 (2001)

    Article  Google Scholar 

  3. Schuur, E.A.G., McGuire, A.D., Schaedel, C., Grosse, G., Harden, J.W., Hayes, D.J., Hugelius, G., Koven, C.D., Kuhry, P., Lawrence, D.M., Natali, S.M., Olefeldt, D., Romanovsky, V.E., Schaefer, K., Turetsky, M.R., Treat, C.C., Vonk, J.E.: Climate change and the permafrost carbon feedback. Nature 520, 171–179 (2015)

    Article  Google Scholar 

  4. Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J.W., Schuur, E.A.G., Ping, C.-L. , Schirrmeister, L., Grosse, G., Michaelson, G.J., Koven, C.D., O’Donnell, J.A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., Kuhry, P.: Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps. Biogeosciences 11, 6573–6593 (2014)

    Article  Google Scholar 

  5. Turner, J., Overland, J.E., Walsh, J.E.: An arctic and antarctic perspective on recent climate change. Int. J. Climatol. 27, 277–293 (2007)

    Article  Google Scholar 

  6. Hansen, J., Ruedy, R., Glascoe, J., Sato, M.: Giss analysis of surface temperature change. J. Geophys. Res. Atmosph. 104, 30997–31022 (1999)

    Article  Google Scholar 

  7. Assessment, A.C.I.: Impacts of a Warming Arctic-Arctic Climate Impact Assessment, by Arctic Climate Impact Assessment, vol. 1, p 144. Cambridge University Press, Cambridge, UK (2004). ISBN 0521617782

    Google Scholar 

  8. Koven, C.D., Ringeval, B., Friedlingstein, P., Ciais, P., Cadule, P., Khvorostyanov, D., Krinner, G., Tarnocai, C.: Permafrost carbon-climate feedbacks accelerate global warming. Proc. Nat. Acad. Sci. 108, 14769–14774 (2011)

    Article  Google Scholar 

  9. Osterkamp, T.: Response of Alaskan permafrost to climate. In: Fourth International Conference on Permafrost, Fairbanks, Alaska, pp 17–22 (1983)

  10. Walvoord, M.A., Striegl, R.G.: Increased groundwater to stream discharge from permafrost thawing in the Yukon River Basin: potential impacts on lateral export of carbon and nitrogen. Geophysical Research Letters, pp. 34 (2007)

  11. Lyon, S., Destouni, G., Giesler, R., Humborg, C., Mörth, C.-M. , Seibert, J. , Karlsson, J., Troch, P.: Estimation of permafrost thawing rates in a sub-arctic catchment using recession flow analysis. Hydrol. Earth Syst. Sci. 13, 595–604 (2009)

    Article  Google Scholar 

  12. Pachauri, R.K., Allen, M., Barros, V., Broome, J., Cramer, W., Christ, R., Church, J., Clarke, L., Dahe, Q., Dasgupta, P., et al.: Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (2014)

  13. Koven, C.D., Riley, W.J., Stern, A.: Analysis of permafrost thermal dynamics and response to climate change in the CMIP5 Earth System Models. J. Clim. 26, 1877–1900 (2013)

    Article  Google Scholar 

  14. Painter, S., Moulton, J., Wilson, C.: Modeling challenges for predicting hydrologic response to degrading permafrost. Hydrogeology Journal, pp. 1–4

  15. Kurylyk, B.L., MacQuarrie, K.T., McKenzie, J.M.: Climate change impacts on groundwater and soil temperatures in cold and temperate regions: implications, mathematical theory, and emerging simulation tools. Earth-Sci. Rev. 138, 313–334 (2014)

    Article  Google Scholar 

  16. Harlan, R.: Analysis of coupled heat-fluid transport in partially frozen soil. Water Resour. Res. 9, 1314–1323 (1973)

    Article  Google Scholar 

  17. Guymon, G.L., Luthin, J.N.: A coupled heat and moisture transport model for arctic soils. Water Resour. Res. 10, 995–1001 (1974)

    Article  Google Scholar 

  18. Taylor, G.S., Luthin, J.N.: A model for coupled heat and moisture transfer during soil freezing. Can. Geotechn. J. 15, 548–555 (1978)

    Article  Google Scholar 

  19. Takata, K., Emori, S., Watanabe, T.: Development of the minimal advanced treatments of surface interaction and runoff. Glob. Planet. Chang. 38, 209–222 (2003)

    Article  Google Scholar 

  20. Nicolsky, D., Romanovsky, V., Alexeev, V., Lawrence, D.: Improved modeling of permafrost dynamics in a GCM land-surface scheme. Geophysical research letters, pp. 34 (2007)

  21. Lawrence, D.M., Slater, A.G., Swenson, S.C.: Simulation of present-day and future permafrost and seasonally frozen ground conditions in CCSM4. J. Clim. 25, 2207–2225 (2012)

    Article  Google Scholar 

  22. McKenzie, J.M., Voss, C.I., Siegel, D.I.: Groundwater flow with energy transport and water–ice phase change: numerical simulations, benchmarks, and application to freezing in peat bogs. Adv. water Resour. 30, 966–983 (2007)

    Article  Google Scholar 

  23. Bense, V., Ferguson, G., Kooi, H.: Evolution of shallow groundwater flow systems in areas of degrading permafrost, Geophysical Research Letters, pp. 36 (2009)

  24. Painter, S.L., Karra, S.: Constitutive model for unfrozen water content in subfreezing unsaturated soils, Vadose Zone Journal, pp. 13 (2014)

  25. Painter, S.L.: Three-phase numerical model of water migration in partially frozen geological media: model formulation, validation, and applications. Comput. Geosci. 15, 69–85 (2011)

    Article  Google Scholar 

  26. Grimm, R.E., Painter, S.L.: On the secular evolution of groundwater on Mars. Geophys. Res. Lett. 36, n/a–n/a (2009). L24803

    Article  Google Scholar 

  27. Frampton, A., Painter, S., Lyon, S.W., Destouni, G.: Non-isothermal, three-phase simulations of near-surface flows in a model permafrost system under seasonal variability and climate change. J. Hydrol. 403, 352 – 359 (2011)

    Article  Google Scholar 

  28. Karra, S., Painter, S., Lichtner, P.: Three-phase numerical model for subsurface hydrology in permafrost-affected regions. Cryosphere Discuss 8, 149–185 (2014)

    Article  Google Scholar 

  29. Lichtner, P.C., Hammond, G.E., Lu, C., Karra, S., Bisht, G., Andre, B., Mills, R.T., Kumar, J.: PFLOTRAN Web page. http://www.pflotran.org (2013)

  30. Kumar, J., Collier, N., Bisht, G., Mills, R.T., Thornton, P.E., Iversen, C.M., Romanovsky, V.: Modeling the spatiotemporal variability in subsurface thermal regimes across a low-relief polygonal tundra landscape. Cryosphere 10, 2241–2274 (2016)

    Article  Google Scholar 

  31. Painter, S.L., Coon, E.T., Atchley, A.L., Berndt, M., Garimella, R., Moulton, J.D., Svyatskiy, D., Wilson, C.J.: Integrated surface/subsurface permafrost thermal hydrology: model formulation and proof-of-concept simulations. Water Resour. Res. 52, 6062–6077 (2016)

    Article  Google Scholar 

  32. Coon, E.T., Moulton, J.D., Painter, S.L.: Managing complexity in simulations of land surface and near-surface processes. Environ. Modell. Softw. 78, 134–149 (2016)

    Article  Google Scholar 

  33. Dall’Amico, M., Endrizzi, S., Gruber, S., Rigon, R.: A robust and energy-conserving model of freezing variably-saturated soil. Cryosphere 5, 469–484 (2011)

    Article  Google Scholar 

  34. Pikul, M.F., Street, R.L., Remson, I.: A numerical model based on coupled one-dimensional Richards and Boussinesq equations. Water Resour. Res. 10, 295–302 (1974)

    Article  Google Scholar 

  35. Zhu, Y., Zha, Y., Tong, J., Yang, J.: Method of coupling 1-D unsaturated flow with 3-D saturated flow on large scale. Water Sci. Eng. 4, 357–373 (2011)

    Google Scholar 

  36. Hazenberg, P., Fang, Y., Broxton, P., Gochis, D., Niu, G.-Y. , Pelletier, J.D., Troch, P.A., Zeng, X.: A hybrid-3D hillslope hydrological model for use in earth system models. Water Resour. Res. 51, 8218–8239 (2015)

    Article  Google Scholar 

  37. Coon, E.T.: ATS: The Advanced Terrestrial Simulator. http://github.com/amanzi/ats (2016)

  38. Moulton, J.D., Berndt, M., Garimella, R., Prichett-Sheats, L., Hammond, G., Day, M., Meza, J.: High-level design of Amanzi, the multi-process high performance computing simulator, Office of Environmental Management, United States Department of Energy, Washington DC (2012)

  39. Heroux, M., Bartlett, R., Hoekstra, V.H., Hu, J., Kolda, T., Lehoucq, R., Long, K., Pawlowski, R., Phipps, E., Salinger, A., Thornquist, H., Tuminaro, R., Wil-lenbring, J., Williams, A.: An overview of trilinos. Technical report sand2003-2927, Sandia National Laboratory (2003)

  40. Garimella, R.V., Perkins, W.A., Buksas, M.W., Berndt, M., Lipnikov, K., Coon, E., Moulton, J.D., Painter, S.L.: Mesh infrastructure for coupled multiprocess geophysical simulations. Procedia Engineering 82, 34 – 45 (2014)

    Article  Google Scholar 

  41. Da Veiga, L.B., Lipnikov, K., Manzini, G.: The mimetic finite difference method for elliptic problems, vol. 11, Springer (2014)

  42. Lipnikov, K., Manzini, G., Shashkov, M.: Mimetic finite difference method. J. Comput. Phys. 257, 1163–1227 (2014)

    Article  Google Scholar 

  43. Calef, M.T., Fichtl, E.D., Warsa, J.S., Berndt, M., Carlson, N.N.: Nonlinear Krylov acceleration applied to a discrete ordinates formulation of the k-eigenvalue problem. J. Comput. Phys. 238, 188–209 (2013)

    Article  Google Scholar 

  44. Carlson, N.N., Miller, K.: Design and application of a gradient-weighted moving finite element code I: in one dimension. SIAM J. Sci. Comput. 19, 728–765 (1998)

    Article  Google Scholar 

  45. Atchley, A.L., Painter, S.L., Harp, D.R., Coon, E.T., Wilson, C.J., Liljedahl, A.K., Romanovsky, V.E.: Using field observations to inform thermal hydrology models of permafrost dynamics with ATS (v0.83). Geosci. Model Develop. 8, 2701–2722 (2015)

    Article  Google Scholar 

  46. Atchley, A.L., Coon, E.T., Painter, S.L., Harp, D.R., Wilson, C.J.: Influences and interactions of inundation, peat, and snow on active layer thickness. Geophys. Res. Lett. 43, 5116–5123 (2016). 2016GL068550

    Article  Google Scholar 

  47. Lawrence Livermore National Laboratory, A mesh and field I/O library and scientific database. https://wci.llnl.gov/simulation/computer-codes/silo (2016)

  48. Jorgenson, M.T., Shur, Y.L., Pullman, E.R.: Abrupt increase in permafrost degradation in Arctic Alaska, Geophysical Research Letters, pp. 33 (2006)

  49. Liljedahl, A., Hinzman, L., Schulla, J.: Ice-wedge polygon type controls low-gradient watershed-scale hydrology. In: Proceedings of the Tenth International Conference on Permafrost, vol. 1, pp 231–236 (2012)

  50. Hinzman, L.D., Bettez, N.D., Bolton, W.R., Chapin, F.S., Dyurgerov, M.B., Fastie, C.L. , Griffith, B., Hollister, R.D., Hope, A., Huntington, H.P., et al.: Evidence and implications of recent climate change in Northern Alaska and other Arctic regions. Clim. Chang. 72, 251–298 (2005)

    Article  Google Scholar 

  51. Rowland, J.C., Jones, C.E., Altmannm, G., Bryan, R., Crosby, B.T., Hinzman, L.D., Kane, D.L., Lawrence, D.M., Mancino, A., Marsh, P., McNamara, J.P., Romanvosky, V.E., Toniolo, H., Travis, B.J., Trochim, E., Wilson, C.J., Geernaert, G.L.: Arctic landscapes in transition: responses to thawing permafrost. Eos, Trans. Amer. Geophys Union 91, 229–230 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Jan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jan, A., Coon, E.T., Painter, S.L. et al. An intermediate-scale model for thermal hydrology in low-relief permafrost-affected landscapes. Comput Geosci 22, 163–177 (2018). https://doi.org/10.1007/s10596-017-9679-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10596-017-9679-3

Keywords

Navigation