Skip to main content

Advertisement

Log in

Pre-engineering Thinking and the Engineering Habits of Mind in Preschool Classroom

  • Published:
Early Childhood Education Journal Aims and scope Submit manuscript

A group of five children are folding paper airplanes and throwing them across the room. They are talking about how the planes are flying. One child says, “I’m going to give mine a motor.” The child walks to a table and selects a pair of scissors, begins making cuts on his plane, then presents it to the other children. A second child grabs scissors and cuts off the tip of her plane. They return to throwing the planes.

Abstract

Young children engage in pre-engineering thinking and play in their day-to-day activities. However, early childhood teachers often miss opportunities to facilitate and extend this type of play. In order to support teachers in this undertaking, the current study aimed to answer the question: What does pre-engineering thinking look like in preschool? Nine preschool classrooms were observed, and mixed-methods, multiple case study analyses were conducted with classroom observation data as well as teacher-reported data. Our findings indicate that children engage in engineering habits of mind throughout the classroom, children’s access to materials and time to generate their own problems of interest are crucial, and teachers were often uninvolved when children demonstrated engineering habits of mind. Notably, teachers with > 5 years of teaching experience and lower teaching efficacy related to behavior management and engaging children in learning activities had classrooms with zero or few occurrences of engineering habits of mind. These results suggest that teachers may need support in engaging children in learning activities and managing classroom discipline before they undertake engineering-specific professional development. Topics to address in continuing professional development should focus on classroom environments, materials, and interactions that encourage children in generating and solving problems of their own interest as a way to facilitate pre-engineering thinking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Adams, R., Evangelou, D., English, L., De Figueiredo, A. D., Mousoulides, N., Parley, A. L., et al. (2013). Multiple perspectives on engaging future engineers. Journal of Engineering Education, 100, 48–88. https://doi.org/10.1002/j.2168-9830.2011.tb00004.x.

    Article  Google Scholar 

  • Azmitia, M. (1988). Peer interaction and problem solving: When are two heads better than one? Child Development, 59, 87–96. https://doi.org/10.1111/1467-8624.ep10514042.

    Article  Google Scholar 

  • Bagiati, A., & Evangelou, D. (2011). Starting young: Learning outcomes of a developmentally appropriate PreK engineering curriculum. In Proceedings of the research in engineering education symposium. Madrid: Universidad Politecnica de Madres. http://rees2009.pbworks.com/w/file/fetch/63149087/REES%202011%20proceedings.pdf.

  • Bagiati, A., & Evangelou, D. (2015). Engineering curriculum in the preschool classroom: The teacher’s experience. European Early Childhood Education Research Journal, 23, 112–128. https://doi.org/10.1080/1350293X.2014.991099.

    Article  Google Scholar 

  • Bagiati, A., Evangelou, D., & Dobbs-Oates, J. (2011). Exposure to early engineering: A parental perspective. In Proceedings of the American society for engineering education annual conference & exposition. Vancouver, BC: ASEE. https://peer.asee.org/exposure-to-early-engineering-a-parental-perspective.

  • Bairaktarova, D., Evangelou, D., Bagiati, A., & Dobbs-Oates, J. (2012). The role of classroom artifacts in developmental engineering. In Proceedings of the American society for engineering education annual conference. San Antonio, TX: ASEE. https://peer.asee.org/the-role-of-classroom-artifacts-in-developmental-engineering.

  • Benjamin, N., Haden, C. A., & Wilkerson, E. (2010). Enhancing building, conversation, and learning through caregiver-child interactions in a children’s museum. Developmental Psychology, 46(2), 502–515.

    Article  Google Scholar 

  • Bers, M. (2007). Project interActions: A multigenerational robotic learning environment. Journal of Science Education & Technology, 16(6), 537–552. https://doi.org/10.1007/s10956-007-9074-2.

    Article  Google Scholar 

  • Bers, M. U., Seddighin, S., & Sullivan, A. (2013). Ready for robotics: Bringing together the T and E of STEM in early childhood teacher education. Journal of Technology and Teacher Education, 21(3), 355–377. Retrieved from http://www.editlib.org/p/41987/.

  • Bonawitz, E., Shafto, P., Gweon, H., Goodman, N. D., Spelke, E., & Schulz, L. (2011). The double-edged sword of pedagogy: Instruction limits spontaneous exploration and discovery. Cognition, 120, 322–330. https://doi.org/10.1016/j.cognition.2010.10.001.

    Article  Google Scholar 

  • Brophy, S. P., & Evangelou, D. (2007). Precursors to engineering thinking (PET). In Proceedings of the annual conference of the American society of engineering education. Washington, DC: ASEE. https://peer.asee.org/3011.

  • Cardella, M. E., Svarovsky, G. N., & Dorie, B. L. (2013). Gender research on adult-child discussions within informal engineering environments (GRADIENT) early findings. In Proceedings of the annual conference of the American society of engineering education. Atlanta, GA: ASEE. https://peer.asee.org/19649.

  • Copple, C., & Brendekamp, S. (Eds.) (2009). Developmentally appropriate practice in early childhood programs serving birth through age 8 (3rd ed.). Washington, DC: National Association for the Education of Young Children.

    Google Scholar 

  • Crismond, D. (2001). Learning and using science ideas when doing investigate-and-redesign tasks: A study of naive, novice, and expert designers doing constrained and scaffolded design work. Journal of Research in Science Teaching, 38, 791–820. https://doi.org/10.1002/tea.1032.

    Article  Google Scholar 

  • Cunningham, C. M., & Hester, K. (2007). Engineering is elementary: An engineering and technology curriculum for children. In Proceedings of the American society for engineering education annual conference. Honolulu, HI.

  • Dorie, B. L., Cardella, M. E., & Svarovsky, G. N. (2014). Capturing the design thinking of young children interacting with a parent. In Proceedings of the annual conference of the American society of engineering education. Washington, DC: ASEE.

    Google Scholar 

  • Dorie, B. L., Cardella, M. E., & Svarovsky, G. N. (2015). Engineering together: Context in dyadic talk during an engineering task. In Proceedings of the annual conference of the American society of engineering education. Seattle, WA: ASEE. https://peer.asee.org/20147.

  • Early Childhood Iowa. (2012). Iowa early learning standards. Retrieved from https://www.educateiowa.gov/documents/early-childhood/2014/10/iowa-early-learning-standards-2012.

  • Ehri, L. C. (2005). Learning to read words: Theory, findings, and issues. Scientific Studies of Reading, 9, 167–188. https://doi.org/10.1207/s1532799xssr0902_4.

    Article  Google Scholar 

  • English, L. D. (2016). STEM education K-12: Perspectives on integration. International Journal of STEM Education, 3(1), 3. https://doi.org/10.1186/s40594-016-0036-1.

    Article  Google Scholar 

  • Evangelou, D., Dobbs-Oates, J., Bagiati, A., Liang, S., & Choi, J. Y. (2010). Talking about artifacts: Preschool children’s explorations with sketches, stories, and tangible objects. Early Childhood Research and Practice, 12. Retrieved from http://ecrp.uiuc.edu/v12n2/bagiati.html.

  • Ferrara, K., Hirsh-Pasek, K., Newcombe, N. S., Golinkoff, R. M., & Lam, W. S. (2011). Block talk: Spatial language during block play. Mind, Brain, and Education, 5, 143–151. https://doi.org/10.1111/j.1751-228X.2011.01122.x.

    Article  Google Scholar 

  • Flannery, L. P., & Bers, M. U. (2013). Let’s dance the “robot hokey-pokey!”: Children’s programming approaches and achievement throughout early cognitive development. Journal of Research on Technology in Education, 46(1), 81–101. https://doi.org/10.1080/15391523.2013.10782614.

    Article  Google Scholar 

  • Fleer, M. (2000). Working technologically: Investigations into how young children design and make during technology education. International Journal of Technology and Design Education, 10, 43–59. https://doi.org/10.1016/j.compedu.2013.07.043.

    Article  Google Scholar 

  • Gold, Z. S., Elicker, J., Choi, J. Y., Anderson, T., & Brophy, S. P. (2015). Preschoolers’ engineering play behaviors: Differences in gender and play context. Children, Youth, and Environments, 25, 1–21. https://doi.org/10.7721/chilyoutenvi.25.3.0001.

    Article  Google Scholar 

  • Greenfield, D. B., Jirout, J., Dominguez, X., Greenberg, A., Maier, M., & Fuccillo, J. (2009). Science in the preschool classroom: A programatic research agenda to improve science readiness. Early Education and Development, 20, 238–264. https://doi.org/10.1080/10409280802595441.

    Article  Google Scholar 

  • Haden, C. A., Jant, E. A., Hoffman, P. C., Marcus, M., Geddes, J. R., & Gaskins, S. (2014). Supporting family conversations and children’s STEM learning in a children’s museum. Early Childhood Research Quarterly, 29, 333–344. https://doi.org/10.1016/j.ecresq.2014.04.004.

    Article  Google Scholar 

  • Harms, T., Clifford, R. M., & Cryer, D. (2015). Early childhood environment rating scale (third edition). New York: Teachers College Press.

    Google Scholar 

  • Katehi, L., Pearson, G., & Feder, M. (2009). The status and nature of K-12 engineering education in the United States. The Bridge, 39, 5–10. Retrieved from https://www.nae.edu/Publications/Bridge/16145/16161.aspx.

  • Kazakoff, E., Sullivan, A., & Bers, M. (2012). The effect of a classroom-based intensive robotics and programming workshop on sequencing ability in early childhood. Early Childhood Education Journal, 41, 245–255. https://doi.org/10.1007/s10643-012-0554-5.

    Article  Google Scholar 

  • Keren, G., Ben-David, A., & Fridin, M. (2012). Kindergarten assistive robotics (KAR) as a tool for spatial cognition in pre-school education. Paper presented at the international conference on intelligent robots and systems. IEEE: Vilamoura. https://doi.org/10.1109/IROS.2012.6385645.

  • Keren, G., & Fridin, M. (2014). Kindergarten social assistive robot (KindSAR) for children’s geometric thinking and metacognitive development in preschool education: A pilot study. Computers in Human Behavior, 35, 400–412. https://doi.org/10.1016/j.chb.2014.03.009.

    Article  Google Scholar 

  • Lippard, C. N., Lamm, M. H. & Riley, K. L. (2017). Engineering thinking in prekindergarten children: A systematic literature review. Journal of Engineering Education, 106, 454–474. https://doi.org/10.1002/jee.20172.

    Article  Google Scholar 

  • Loveland, T., & Dunn, D. (2014). Engineering Habits of Mind in Technology Education. Paper presented at the annual conference of the International Technology and Engineering Educators Association, Milwaukee, Wisconsin.

  • Lucas, C. G., Bridgers, S., Griffiths, T. L., & Gopnik, A. (2014). When children are better (or at least more open-minded) learners than adults: Developmental differences in learning the forms of causal relationships. Cognition, 131, 284–299. https://doi.org/10.1016/j.cognition.2013.12.010.

    Article  Google Scholar 

  • Marginson, S., Tytler, R., Freeman, B., & Roberts, K. (2013). STEM: Country comparisons. Melbourne: Australian Council of Learned Academies.

    Google Scholar 

  • Mashburn, A. J., Pianta, R. C., Hamre, B. K., Downer, J. T., Barbarin, O. A., Bryant, D., et al. (2008). Measures of classroom quality in prekindergarten and children’s development of academic, language, and social skills. Child Development, 79, 732–749. https://doi.org/10.1111/j.1467-8624.2008.01154.x.

    Article  Google Scholar 

  • McCabe, M. P. (1991). Influence of creativity and intelligence on academic performance. Journal of Creative Behavior, 25, 116–122.

    Article  Google Scholar 

  • McDonald, S., & Howell, J. (2012). Watching, creating, and achieving: Creative technologies as a conduit for learning in the early years. British Journal of Educational Technology, 43, 641–651. https://doi.org/10.1111/j.1467-8535.2011.01231.x.

    Article  Google Scholar 

  • Morgan, P. L., Farkas, G., Hillemeier, M. M., & Maczuga, S. (2016). Science achievement gaps begin very early, persist, and are largely explained by modifiable factors. Educational Research, 45, 18–35.

    Article  Google Scholar 

  • Moser, A., Zimmermann, L., Dickerson, K., Grenell, A., Barr, R., & Gerhardstein, P. (2015). They can interact, but can they learn? Toddlers’ transfer learning from touchscreens and television. Journal of Experimental Child Psychology, 137, 137–155. https://doi.org/10.1016/j.jecp.2015.04.002.

    Article  Google Scholar 

  • National Academy of Engineering and National Research Council (NAE and NRC). (2009). Engineering in K-12 education: Understanding the status and improving the prospects. Washington, DC: The National Academies Press.

    Google Scholar 

  • National Research Council. (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.

    Google Scholar 

  • National Research Council. (2014). STEM integration in K-12 education: Status, prospects, and an agenda for research. Washington, DC: National Academies Press.

    Google Scholar 

  • Nelson, D. G. K., O’Neil, K. A., & Asher, Y. M. (2008). A mutually facilitative relationship between learning names and learning concepts in preschool children: The case of artifacts. Journal of Cognition and Development, 9, 171–193. https://doi.org/10.1080/15248370802022621.

    Article  Google Scholar 

  • NGSS Lead States. (2013). Next generation science standards: For states, by states. Washington, DC: The National Academies Press.

    Google Scholar 

  • North Carolina Foundations Task Force. (2013). North Carolina foundations for early learning and development. Raleigh, NC: North Carolina Foundations Task Force.

    Google Scholar 

  • Pawlina, S., & Stanford, C. (2011). Preschoolers grow their brains: Shifting mindsets for greater resiliency and better problem solving. Young Children, 66(5), 30–35.

    Google Scholar 

  • Pellegrino, J. W., & Goldman, S. R. (1987). Information processing and elementary mathematics. Journal of Learning Disabilities, 20, 23–32. https://doi.org/10.1177/002221948702000105.

    Article  Google Scholar 

  • President’s Council of Advisors on Science and Technology (PCAST). (2010). Prepare and inspire: K-12 education in Science, Technology, Engineering, and Math (STEM) education for America’s future. Retrieved from http://www.whitehouse.gov/sites/default/files/microsites/ostp/pcast-stem-ed-final.pdf.

  • Robinson, J. P., & Lubienski, S. T. (2011). The development of gender achievement gaps in mathematics and reading during elementary and middle school: Examining direct cognitive assessments and teacher ratings. American Educational Research Journal, 48, 268–302. https://doi.org/10.3102/0002831210372249.

    Article  Google Scholar 

  • U.S. Department of Education, Office of Planning, Evaluation, and Policy Development, Policy and Program Studies Service. (2010). Toward the identification of features of effective professional development for early childhood educattors, literature review. Washington, DC: U.S. Department of Education.

    Google Scholar 

  • Verdine, B. N., Golinkoff, R. M., Hirsh-Pasek, K., Newcombe, N. S., Filipowicz, A. T., & Chang, A. (2014). Deconstructing building blocks: Preschoolers’ spatial assembly performance relates to early mathematical skills. Child Development, 85, 1062–1076. https://doi.org/10.1111/cdev.12165.

    Article  Google Scholar 

  • Wolfgang, C. H., Stannard, L. L., & Jones, I. (2001). Block play performance among preschoolers as a predictor of later school achievement in mathematics. Journal of Research in Childhood Education, 15, 173–180. https://doi.org/10.1080/02568540109594958.

    Article  Google Scholar 

  • Yin, R. K. (2014). Case study research: Design and methods. Thousand Oaks, CA: Sage Publications.

    Google Scholar 

  • Yoon, S. Y., Evans, M. G., & Strobel, J. (2014). Validation of the Teaching Engineering Self-Efficacy Scale for K-12 teachers: A structural equation modeling approach. Journal of Engineering Education, 103, 463–485. https://doi.org/10.1002/jee.2004.

    Article  Google Scholar 

Download references

Funding

Funding was provided by Iowa State University (US) College of Human Sciences and Iowa State University College of Engineering.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine. N. Lippard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lippard, C.N., Lamm, M.H., Tank, K.M. et al. Pre-engineering Thinking and the Engineering Habits of Mind in Preschool Classroom. Early Childhood Educ J 47, 187–198 (2019). https://doi.org/10.1007/s10643-018-0898-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10643-018-0898-6

Keywords

Navigation