Skip to main content
Log in

Reconsidering sufficient and optimal test design in acute toxicity testing

  • Published:
Ecotoxicology Aims and scope Submit manuscript

Abstract

In dose–response analysis, regression analysis and hypothesis testing are the main tools of choice. These methods, however, have specific requirements for the design of acute toxicity experiments. To produce meaningful results, both approaches require a constant exposure concentration over the duration of the test, and regression analysis makes an additional demand for at least two doses with partial mortality at the end of the test. These requirements, however, result from the limitations of the statistical techniques, which only use the observations at the end of the test. In practice, most standard protocols for acute testing prescribe that observations are made at several points in time (often daily). In this contribution, I demonstrate how dynamic modelling can make use of this information to produce robust estimates of LC50 as function of time, with confidence intervals, from data sets that violate the requirements for standard dose–response analysis. This form of modelling invites an entirely different, more flexible, view on experimental design, which could lead to a more efficient use of test animals and, at the same time, a stronger support for environmental risk assessment as well as the science of ecotoxicology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Albert C, Ashauer R, Künsch HR, Reichert P (2012) Bayesian experimental design for a toxicokinetic–toxicodynamic model. J Stat Plan Inference 142:263–275

    Article  Google Scholar 

  • Ashauer R, Escher BI (2010) Advantages of toxicokinetic and toxicodynamic modelling in aquatic ecotoxicology and risk assessment. J Environ Monit 12:2056–2061

    Article  CAS  Google Scholar 

  • Ashauer R, Caravatti I, Hintermeister A, Escher BI (2010a) Bioaccumulation kinetics of organic xenobiotic pollutants in the freshwater invertebrate Gammarus pulex modeled with prediction intervals. Environ Toxicol Chem 29:1625–1636

    Article  CAS  Google Scholar 

  • Ashauer R, Hintermeister A, Caravatti I, Kretschmann A, Escher BI (2010b) Toxicokinetic and toxicodynamic modeling explains carry-over toxicity from exposure to diazinon by slow organism recovery. Environ Sci Technol 44:3963–3971

    Article  CAS  Google Scholar 

  • Ashauer R, Agatz A, Albert C, Ducrot V, Galic N, Hendriks J, Jager T, Kretschmann A, O’Connor I, Rubach MN, Nyman AM, Schmitt W, Stadnicka J, Van den Brink PJ, Preuss TG (2011a) Toxicokinetic–toxicodynamic modeling of quantal and graded sublethal endpoints: a brief discussion of concepts. Environ Toxicol Chem 30:2519–2524

    Article  CAS  Google Scholar 

  • Ashauer R, Wittmer I, Stamm C, Escher BI (2011b) Environmental risk assessment of fluctuating diazinon concentrations in an urban and agricultural catchment using toxicokinetic–toxicodynamic modeling. Environ Sci Technol 45:9783–9792

    Article  CAS  Google Scholar 

  • Ashauer R, Hintermeister A, O’Connor I, Elumelu M, Hollender J, Escher BI (2012) Significance of xenobiotic metabolism for bioaccumulation kinetics of organic chemicals in Gammarus pulex. Environ Sci Technol 46:3498–3508

    Article  CAS  Google Scholar 

  • Ashauer R, Thorbek P, Warinton JS, Wheeler JR, Maund S (2013) A method to predict and understand fish survival under dynamic chemical stress using standard ecotoxicity data. Environ Toxicol Chem 32:954–965

    Article  CAS  Google Scholar 

  • Baas J, Jager T, Kooijman SALM (2009) Estimation of no effect concentrations from exposure experiments when values scatter among individuals. Ecol Model 220:411–418

    Article  Google Scholar 

  • Bedaux JJM, Kooijman SALM (1994) Statistical analysis of bioassays based on hazard modelling. Environ Ecol Stat 1:303–314

    Article  Google Scholar 

  • Geiger DL, Northcott CE, Call DJ, Brooke LT (1985) Acute toxicities of organic chemicals to fathead minnows (Pimephales promelas), vol 2. University of Wisconsin-Superior, Superior, WI

    Google Scholar 

  • Geiger DL, Call DJ, Brooke LT (1988) Acute toxicities of organic chemicals to fathead 323 minnow (Pimephales promelas), vol 4. Center for Lake Superior Environmental 324 Studies, University of Wisconsin-Superior, Superior, WI

    Google Scholar 

  • Green JW, Springer TA, Stavely JP (2012) The drive to ban the NOEC/LOEC in favor of ECx is misguided and misinformed. Integr Environ Assess Manag 9:12–16

    Article  Google Scholar 

  • Hoekstra JA (1991) Estimation of the LC50, a review. Environmetrics 2:139–152

    Article  Google Scholar 

  • Jager T (2011) Some good reasons to ban ECx and related concepts in ecotoxicology. Environ Sci Technol 45:8180–8181

    Article  CAS  Google Scholar 

  • Jager T, Kooijman SALM (2009) A biology-based approach for quantitative structure–activity relationships (QSARs) in ecotoxicity. Ecotoxicology 18:187–196

    Article  CAS  Google Scholar 

  • Jager T, Zimmer EI (2012) Simplified dynamic energy budget model for analysing ecotoxicity data. Ecol Model 225:74–81

    Article  CAS  Google Scholar 

  • Jager T, Heugens EHW, Kooijman SALM (2006) Making sense of ecotoxicological test results: towards application of process-based models. Ecotoxicology 15:305–314

    Article  CAS  Google Scholar 

  • Jager T, Albert C, Preuss TG, Ashauer R (2011) General unified threshold model of survival—a toxicokinetic–toxicodynamic framework for ecotoxicology. Environ Sci Technol 45:2529–2540

    Article  CAS  Google Scholar 

  • Kooijman SALM (1996) An alternative for NOEC exists, but the standard model has to be abandoned first. Oikos 75:310–316

    Article  Google Scholar 

  • Kretschmann A, Ashauer R, Hitzfeld K, Spaak P, Hollender J, Escher BI (2011) Mechanistic toxicodynamic model for receptor-mediated toxicity of diazoxon, the active metabolite of diazinon, in Daphnia magna. Environ Sci Technol 45:4980–4987

    Article  CAS  Google Scholar 

  • Landis WG, Chapman PM (2011) Well past time to stop using NOELs and LOELs. Integr Environ Assess Manag 7:vi–viii

    Article  Google Scholar 

  • Newman MC, McCloskey JT (2000) The individual tolerance concept is not the sole explanation for the probit dose-effect model. Environ Toxicol Chem 19:520–526

    CAS  Google Scholar 

  • Nyman AM, Schirmer K, Ashauer R (2012) Toxicokinetic–toxicodynamic modelling of survival of Gammarus pulex in multiple pulse exposures to propiconazole: model assumptions, calibration data requirements and predictive power. Ecotoxicology 21:1828–1840

    Article  CAS  Google Scholar 

  • OECD (1992) OECD guideline for testing of chemicals 203. Fish, acute toxicity test. Organisation for Economic Cooperation and Development (OECD), Paris

    Book  Google Scholar 

  • OECD (2006) Current approaches in the statistical analysis of ecotoxicity data: a guidance to application, series on testing and assessment, no. 54. Organisation for Economic Cooperation and Development (OECD), Paris

    Google Scholar 

  • Rufli H, Springer TA (2011) Can we reduce the number of fish in the OECD acute toxicity test? Environ Toxicol Chem 30:1006–1011

    Article  CAS  Google Scholar 

  • Sprague JB (1969) Measurement of pollutant toxicity to fish. I. Bioassay methods for acute toxicity. Water Res 3:793–821

    Article  CAS  Google Scholar 

  • van Ommen Kloeke AE, Jager T, van Gestel CAM, Ellers J, van Pomeren M, Krommenhoek T, Styrishave B, Hansen M, Roelofs D (2012) Time-related survival effects of two gluconasturtiin hydrolysis products on the terrestrial isopod Porcellio scaber. Chemosphere 89:1084–1090

    Article  Google Scholar 

Download references

Acknowledgments

This research has been financially supported by the European Union under the 7th Framework Programme (project acronym CREAM, contract number PITN-GA-2009-238148).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tjalling Jager.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 11 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jager, T. Reconsidering sufficient and optimal test design in acute toxicity testing. Ecotoxicology 23, 38–44 (2014). https://doi.org/10.1007/s10646-013-1149-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10646-013-1149-7

Keywords

Navigation