Skip to main content
Log in

Size-dependent characterisation of historical gold mine wastes to examine human pathways of exposure to arsenic and other potentially toxic elements

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Abandoned historical gold mining wastes often exist as geographically extensive, unremediated, and poorly contained deposits that contain elevated levels of As and other potentially toxic elements (PTEs). One of the key variables governing human exposure to PTEs in mine waste is particle size. By applying a size-resolved approach to mine waste characterisation, this study reports on the proportions of mine waste relevant to human exposure and mobility, as well as their corresponding PTE concentrations, in four distinct historical mine wastes from the gold province in Central Victoria, Australia. To the best of our knowledge, such a detailed investigation and comparison of historical mining wastes has not been conducted in this mining-affected region. Mass distribution analysis revealed notable proportions of waste material in the readily ingestible size fraction (≤250 µm; 36.1–75.6 %) and the dust size fraction (≤100 µm; 5.9–45.6 %), suggesting a high potential for human exposure and dust mobilisation. Common to all mine waste types were statistically significant inverse trends between particle size and levels of As and Zn. Enrichment of As in the finest investigated size fraction (≤53 µm) is of particular concern as these particles are highly susceptible to long-distance atmospheric transport. Human populations that reside in the prevailing wind direction from a mine waste deposit may be at risk of As exposure via inhalation and/or ingestion pathways. Enrichment of PTEs in the finer size fractions indicates that human health risk assessments based on bulk contaminant concentrations may underestimate potential exposure intensities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • ATSDR. (2007). Toxicological profile for arsenic. Agency for Toxic Substances and Disease Registry. Accessed January 6, 2015 from http://www.atsdr.cdc.gov/toxprofiles/tp2.pdf

  • Bea, S. A., Ayora, C., Carrera, J., Saaltink, M. W., & Dold, B. (2010). Geochemical and environmental controls on the genesis of soluble efflorescent salts in Coastal Mine Tailings Deposits: A discussion based on reactive transport modeling. Journal of Contaminant Hydrology, 111(1), 65–82.

    Article  CAS  Google Scholar 

  • Bierlein, F. P., Foster, D. A., McKnight, S., & Arne, D. C. (1999). Timing of gold mineralisation in the Ballarat goldfields, Central Victoria: Constraints from 40Ar/39Ar results. Australian Journal of Earth Sciences, 46(2), 301–309.

    Article  CAS  Google Scholar 

  • Bowell, R. J. (1994). Sorption of arsenic by iron oxides and oxyhydroxides in soils. Applied Geochemistry, 9(3), 279–286.

    Article  CAS  Google Scholar 

  • Brook, E. J., & Moore, J. N. (1988). Particle-size and chemical control of As, Cd, Cu, Fe, Mn, Ni, Pb, and Zn in bed sediment from the Clark Fork river, Montana (USA). Science of the Total Environment, 76(2), 247–266.

    Article  CAS  Google Scholar 

  • Canales, R. M., Guan, H., Bestland, E., Hutson, J., & Simmons, C. T. (2013). Particle-size effects on dissolved arsenic adsorption to an Australian laterite. Environmental Earth Sciences, 68(8), 2301–2312.

    Article  Google Scholar 

  • Candeias, C., Ferreira da Silva, E., Avila, P. F., & Teixeira, J. P. (2014). Identifying sources and assessing potential risk of exposure to heavy metals and hazardous materials in mining areas: The case study of Panasqueira Mine (Central Portugal) as an example. Geosciences, 4(4), 240–268.

    Article  Google Scholar 

  • Cao, S., Duan, X., Zhao, X., Ma, J., Dong, T., Huang, N., et al. (2014). Health risks from the exposure of children to As, Se, Pb and other heavy metals near the largest coking plant in China. Science of the Total Environment, 472, 1001–1009.

    Article  CAS  Google Scholar 

  • Caussy, D. (2003). Case studies of the impact of understanding bioavailability: Arsenic. Ecotoxicology and Environmental Safety, 56(1), 164–173.

    Article  CAS  Google Scholar 

  • Csavina, J., Field, J., Taylor, M. P., Gao, S., Landazuri, A., Betterton, E. A., & Saez, A. E. (2012). A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Science of the Total Environment, 433, 58–73.

    Article  CAS  Google Scholar 

  • Davey, C. J. (1986). The history and archaeology of the North British Mine site, Maldon, Victoria. The Australian Journal of Historical Archaeology, 4, 51–56.

    Google Scholar 

  • Davis, G. B., & Ritchie, A. I. M. (1987). A model of oxidation in pyritic mine wastes: Part 3: Import of particle size distribution. Applied Mathematical Modelling, 11(6), 417–422.

    Article  Google Scholar 

  • EPA South Australia. (2005). EPA guidelines: Composite soil sampling in site contamination assessment and management. Environment Protection Authority (South Australia). Accessed September 16, 2014 from http://www.epa.sa.gov.au/xstd_files/Site%20contamination/Guideline/guide_composite.pdf

  • EPA Victoria. (2002). Community information: Calcine sand gold mine tailings around Bull Street, Castlemaine. Environment Protection Authority (Victoria). Accessed July 14, 2015 from http://trove.nla.gov.au/work/26236003?selectedversion=NBD41272365

  • Fields, S. (2003). The earth’s open wounds: Abandoned and orphaned mines. Environmental Health Perspectives, 111(3), A154–A161.

    Article  Google Scholar 

  • Fuge, R. (2005). Anthropogenic sources. In O. Selinus, B. Alloway, J. A. Centeno, R. B. Finkelman, R. Fuge, U. Lindh, & P. Smedley (Eds.), Essentials of medical geology: Impacts of the natural environment on public health (pp. 43–60). Amsterdam: Elsevier Academic Press.

    Google Scholar 

  • Gerlach, R. W., Dobb, D. E., Raab, G. A., & Nocerino, J. M. (2002). Gy sampling theory in environmental studies. 1. Assessing soil splitting protocols. Journal of Chemometrics, 16(7), 321–328.

    Article  CAS  Google Scholar 

  • Gonzales, P., Felix, O., Alexander, C., Lutz, E., Ela, W., & Saez, A. E. (2014). Laboratory dust generation and size-dependent characterization of metal and metalloid-contaminated mine tailings deposits. Journal of Hazardous Materials, 280, 619–626.

    Article  CAS  Google Scholar 

  • Helsel, D. R., & Hirsch, R. M. (2002). Chapter 12: Trend analysis. In Statistical methods in water resources (pp. 323–356). Accessed January 6, 2015 from http://www.cala.ca/sampling/40_Statistical_Methods_in_Water_Resources.pdf

  • Hinwood, A. L., Sim, M. R., Jolley, D., de Klerk, N., Bastone, E. B., Gerostamoulos, J., & Drummer, O. H. (2004). Exposure to inorganic arsenic in soil increases urinary inorganic arsenic concentrations of residents living in old mining areas. Environmental Geochemistry and Health, 26(1), 27–36.

    Article  CAS  Google Scholar 

  • Imray, P., & Langley, A. (1996). Health-based soil investigation levels. National Environmental Health Forum Monographs. Soil Series No. 1. Adelaide, SA: South Australian Health Commission.

  • Jahan, N., Wilson, M., & Snow, E. T. (2002). Bioaccumulation of arsenic in fish and aquatic food webs in the Victorian goldfields. In Proceedings of the fifth international conference on arsenic exposure and health effects (pp. 14–18), San Diego, CA, USA, July 14–18.

  • James, M. (2004). Evaluating the liquefaction resistance of tailings from hard rock mining. In L. Hinshaw (Ed.), Tailings and mine waste’04: Proceedings of the eleventh tailings and mine waste conference (pp. 89–99), Vail, Colorado, USA, October 10–13, 2004.

  • Jamieson, H. E., Walker, S. R., Andrade, C. F., Wrye, L. A., Rasmussen, P. E., Lanzirotti, A., & Parsons, M. B. (2011). Identification and characterisation of arsenic and metal compounds in contaminated soil, mine tailings, and house dust using synchrotron-based microanalysis. Human and Ecological Risk Assessment: An International Journal, 17(6), 1292–1309.

    Article  CAS  Google Scholar 

  • Keith, D. C., Runnells, D. D., Esposito, K. J., Chermak, J. A., Levy, D. B., Hannula, S. R., et al. (2001). Geochemical models of the impact of acidic groundwater and evaporative sulfate salts on Boulder Creek at Iron Mountain, California. Applied Geochemistry, 16(7), 947–961.

    Article  CAS  Google Scholar 

  • Kim, C. S., Wilson, K. M., & Rytuba, J. J. (2011). Particle-size dependence on metal(loid) distributions in mine wastes: Implications for water contamination and human exposure. Applied Geochemistry, 26(4), 484–495.

    Article  CAS  Google Scholar 

  • Kotsonis, A., & Joyce, E. B. (2003). Regolith mapping at Bendigo, and its relationship to gold in central Victoria, Australia. In I. C. Roach (Ed.), Advances in regolith (pp. 239–243). Perth: CRC LEME.

    Google Scholar 

  • Langmuir, D., Mahoney, J., & Rowson, J. (2006). Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4·2H2O) and their application to arsenic behavior in buried mine tailings. Geochimica et Cosmochimica Acta, 70(12), 2942–2956.

    Article  CAS  Google Scholar 

  • Laul, J. C. (1979). Neutron activation analysis of geological materials. Atomic Energy Review, 17(3), 603–695.

    CAS  Google Scholar 

  • Lawrence, S., & Davies, P. (2010). An archaeology of Australia since 1788. New York: Springer.

    Google Scholar 

  • Lim, H., Lee, J., Chon, H., & Sager, M. (2008). Heavy metal contamination and health risk assessment in the vicinity of the abandoned Songcheon Au–Ag mine in Korea. Journal of Geochemical Exploration, 96(2), 223–230.

    Article  CAS  Google Scholar 

  • Mackay, A. K., Taylor, M. P., Munksgaard, N. C., Hudson-Edwards, K. A., & Burn-Nunes, L. (2013). Identification of environmental lead sources and pathways in a mining and smelting town: Mount Isa, Australia. Environmental Pollution, 180, 304–311.

    Article  CAS  Google Scholar 

  • Martin, R., & Dowling, K. (2013). Trace metal contamination of mineral spring water in an historical mining area in regional Victoria, Australia. Journal of Asian Earth Sciences, 77, 262–267.

    Article  Google Scholar 

  • Martin, R., Dowling, K., Pearce, D., Bennett, J., & Stopic, A. (2013). Ongoing soil arsenic exposure of children living in an historical gold mining area in regional Victoria, Australia: Identifying risk factors associated with uptake. Journal of Asian Earth Sciences, 77, 256–261.

    Article  Google Scholar 

  • Martin, R., Dowling, K., Pearce, D., Sillitoe, J., & Florentine, S. (2014). Health effects associated with inhalation of airborne arsenic arising from mining operations. Geosciences, 4(3), 128–175.

    Article  Google Scholar 

  • Martinez-Martinez, S., Faz, A., Acosta, J. A., Carmona, D. M., Zornoza, R., Yukkilic, B., & Kabas, S. (2010). Heavy metals distribution in soil size fractions from a mining area in the southeast of Spain. In Proceedings 19th world congress of soil science (pp. 3464–3467), Brisbane, QLD, Australia, August 1–6.

  • Meza-Figueroa, D., Maier, R. M., de la O-Villanueva, M., Gomez-Alvarez, A., Moreno-Zazueta, A., Rivera, J., et al. (2009). The impact of unconfined mine tailings on residential areas from a mining town in a semi-arid environment: Nacozari, Sonora, Mexico. Chemosphere, 77(1), 140–147.

    Article  CAS  Google Scholar 

  • Moreno, T., Oldroyd, A., McDonald, I., & Gibbons, W. (2007). Preferential fractionation of trace metals-metalloids into PM10 resuspended from contaminated gold mine tailings at Rodalquilar, Spain. Water, Air, and Soil pollution, 179(1–4), 93–105.

    Article  CAS  Google Scholar 

  • Palumbo-Roe, B., Wragg, J., Cave, M. R., & Wagner, D. (2013). Effect of weathering product assemblages on Pb bioaccessibility in mine waste: Implications for risk management. Environmental Science and Pollution Research, 20(11), 7699–7710.

    Article  CAS  Google Scholar 

  • Pearce, D. C., Dowling, K., Gerson, A. R., Sim, M. R., Sutton, S. R., Newville, M., et al. (2010). Arsenic microdistribution and speciation in toenail clippings of children living in a historic gold mining area. Science of the Total Environment, 408(12), 2590–2599.

    Article  CAS  Google Scholar 

  • Pearce, D. C., Dowling, K., & Sim, M. R. (2012). Cancer incidence and soil arsenic exposure in a historical gold mining area in Victoria, Australia: A geospatial analysis. Journal of Exposure Science & Environmental Epidemiology, 22(3), 248–257.

    Article  CAS  Google Scholar 

  • Pepper, M., Roche, C. P., & Mudd, G. M. (2014). Mining legacies—Understanding life-of-mine across time and space. In Proceedings life-of-mine 2014 (pp. 449–466), Brisbane, QLD, Australia, July 16–18. The Australasian Institute of Mining and Metallurgy: Melbourne.

  • Phillips, G. N., & Hughes, M. J. (1996). The geology and gold deposits of the Victorian gold province. Ore Geology Reviews, 11(5), 255–302.

    Article  Google Scholar 

  • Phillips, G. N., & Hughes, M. J. (1998). Victorian gold deposits. AGSO Journal of Australian Geology and Geophysics, 17(4), 213–216.

    Google Scholar 

  • Plumlee, G. S., & Morman, S. A. (2011). Mine wastes and human health. Elements, 7(6), 399–404.

    Article  CAS  Google Scholar 

  • Plumlee, G. S., & Ziegler, T. L. (2003). The medical geochemistry of dusts, soils and other earth materials. In B. S. Lollar, H. D. Holland, & K. K. Turekian (Eds.), Environmental geochemistry: Treatise on geochemistry (Vol. 9, pp. 263–310). Oxford: Elsevier Ltd.

    Google Scholar 

  • Protonotarios, V., Petsas, N., & Moutsatsou, A. (2002). Levels and composition of atmospheric particulates (PM10) in a mining-industrial site in the city of Lavrion, Greece. Journal of the Air and Waste Management Association, 52(11), 1263–1273.

    Article  CAS  Google Scholar 

  • Querol, X., Alastuey, A., Lopez-Soler, A., & Plana, F. (2000). Levels and chemistry of atmospheric particulates induced by a spill of heavy metal mining wastes in the Donana area, Southwest Spain. Atmospheric Environment, 34(2), 239–253.

    Article  CAS  Google Scholar 

  • Radojkovic, A. M., & Bibby, L. M. (2003). The regolith of the BallaratCreswick area. Victorian Initiative for Minerals and Petroleum Report 76, Department of Natural Resources and Environment. Accessed July 10, 2014 from http://dpistore.efirst.com.au/product.asp?pID=534&cID=8

  • Ramsay, W. R. H. (1995). Gold prospectivity in Victoria—Structural controls and mineralising environments. In K. Dowling, & W. R. H. Ramsay (Eds.), Gold in Central Victoria (pp. 31–35). Geology Department, University of Ballarat, Victoria, Australia.

  • Ramsay, W. R. H., Bierlein, F. P., Arne, D. C., & VandenBerg, A. H. M. (1998). Turbidite-hosted gold deposits of Central Victoria, Australia: Their regional setting, mineralising styles, and some genetic constraints. Ore Geology Reviews, 13(1), 131–151.

    Article  Google Scholar 

  • Ramsay, W. R. H., & Willman, C. E. (1988). Gold. In J. D. Douglas, & J. A. Fergusson (Eds.), Geology of Victoria (pp. 454–481).

  • Ranville, J. F., & Schmiermund, R. L. (1999). General aspects of aquatic colloids in environmental geochemistry. In G. S. Plumlee, & M. J. Logsdon (Eds.), The environmental geochemistry of mineral deposits: Part A: Processes, techniques, and health issues (Vol. 6A, pp. 183–199). Society of Economic Geologists, Reviews in Economic Geology.

  • R Core Team. (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. ISBN: 3-900051-07-0. Retrieved from http://www.R-project.org

  • Reich, M., Kesler, S. E., Utsunomiya, S., Palenik, C. S., Chryssoulis, S. L., & Ewing, R. C. (2005). Solubility of gold in arsenian pyrite. Geochimica et Cosmochimica Acta, 69(11), 2781–2796.

    Article  CAS  Google Scholar 

  • Root, R. A., Hayes, S. M., Hammond, C. M., Maier, R. M., & Chorover, J. (2015). Toxic metal(loid) speciation during weathering of iron sulfide mine tailings under semi-arid climate. Applied Geochemistry,. doi:10.1016/j.apgeochem.2015.01.005.

    Google Scholar 

  • Sandiford, M., & Keays, R. R. (1986). Structural and tectonic constraints on the origin of gold deposits in the Ballarat slate belt, Victoria. In J. D. Kleppie, R. W. Boyle, & S. J. Haynes (Eds.), Geological Association of Canada Special Paper 32: Turbidite-hosted gold deposits (pp. 15–24). St. John’s, Nfld., Canada: Geological Association of Canada.

  • Schaider, L. A., Senn, D. B., Brabander, D. J., McCarthy, K. D., & Shine, J. P. (2007). Characterization of zinc, lead, and cadmium in mine waste: Implications for transport, exposure, and bioavailability. Environmental Science and Technology, 41(11), 4164–4171.

    Article  CAS  Google Scholar 

  • Schwarzenbach, R. P., Egli, T., Hofstetter, T. B., von Gunten, U., & Wehrli, B. (2010). Global water pollution and human health. Annual Review of Environment and Resources, 35, 109–136.

    Article  Google Scholar 

  • Sheskin, D. J. (2003). Handbook of parametric and nonparametric statistical procedures (3rd ed.). Florida: CRC Press.

    Book  Google Scholar 

  • Singh, A. K., Hasnain, S. I., & Banerjee, D. K. (1999). Grain size and geochemical partitioning of heavy metals in sediments of the Damodar River—A tributary of the lower Ganga, India. Environmental Geology, 39(1), 90–98.

    Article  CAS  Google Scholar 

  • Smedley, P. L., & Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied Geochemistry, 17(5), 517–568.

    Article  CAS  Google Scholar 

  • Snyder, R. (1984). Basic concepts of the dose-response relationship. In J. V. Rodricks, & R. G. Tardiff (Eds.), Assessment and management of chemical risks (pp. 37–55). American Chemical Society.

  • Sullivan, J. B., & Krieger, G. R. (2001). Clinical environmental health and toxic exposures (2nd ed.). Philadelphia: Lippincott Williams and Wilkins.

    Google Scholar 

  • Sultan, K. (2007). Distribution of metals and arsenic in soils of Central Victoria (Creswick–Ballarat), Australia. Archives of Environmental Contamination and Toxicology, 52(3), 339–346.

    Article  CAS  Google Scholar 

  • Sultan, K., & Dowling, K. (2006). Seasonal changes in arsenic concentrations and hydrogeochemistry of Canadian Creek, Ballarat (Victoria, Australia). Water, Air, and Soil Pollution, 169(1–4), 355–374.

    Article  CAS  Google Scholar 

  • Taylor, M. P., Mackay, A. K., Hudson-Edwards, K. A., & Holz, E. (2010). Soil Cd, Cu, Pb and Zn contaminants around Mount Isa city, Queensland, Australia: Potential sources and risks to human health. Applied Geochemistry, 25(6), 841–855.

    Article  CAS  Google Scholar 

  • Taylor, M. P., Schniering, C. A., Lanphear, B. P., & Jones, A. L. (2011). Lessons learned on lead poisoning in children: One-hundred years on from Turner’s declaration. Journal of Paediatrics and Child Health, 47(12), 849–856.

    Article  Google Scholar 

  • Unger, C., Lechner, A. M., Glen, V., Edraki, M., & Mulligan, D. R. (2012). Mapping and prioritising rehabilitation of abandoned mines in Australia. In Proceedings life-of-mine conference (pp. 259–265). The Australian Institute of Mining and Metallurgy: Melbourne.

  • US EPA. (2000). Short sheet: TRW recommendations for sampling and analysis of soil at lead (Pb) sites. U.S. Environmental Protection Agency. Accessed October 5, 2014 from http://www.epa.gov/superfund/lead/products/sssiev.pdf

  • Walker, S. R., Jamieson, H. E., Lanzirotti, A., Andrade, C. F., & Hall, G. E. M. (2005). The speciation of arsenic in iron oxides in mine wastes from the Giant Gold Mine, N.W.T.: Application of synchrotron micro-XRD and micro-XANES at the grain scale. The Canadian Mineralogist, 43(4), 1205–1224.

    Article  CAS  Google Scholar 

  • Yean, S., Cong, L., Yavuz, C. T., Mayo, J. T., Yu, W. W., Kan, A. T., et al. (2005). Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. Journal of Materials Research, 20(12), 3255–3264.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by an Australian Postgraduate Research Award. The authors would like to thank the Australian Institute of Nuclear Science and Engineering (AINSE) Ltd for providing financial assistance (AINSE PGRA) to enable work on the neutron activation analysis component of this paper. The authors also thank Dr. Christopher Kim at Chapman University, USA, for the provision of technical guidance and additional documentation in support of this study. The authors acknowledge Haydn Swan, Larissa Koroznikova and Gordon Williams at Federation University Australia for their technical advice and assistance relating to laboratory and field work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachael Martin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, R., Dowling, K., Pearce, D.C. et al. Size-dependent characterisation of historical gold mine wastes to examine human pathways of exposure to arsenic and other potentially toxic elements. Environ Geochem Health 38, 1097–1114 (2016). https://doi.org/10.1007/s10653-015-9775-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-015-9775-z

Keywords

Navigation