Skip to main content
Log in

Trace metal content in inhalable particulate matter (PM2.5–10 and PM2.5) collected from historical mine waste deposits using a laboratory-based approach

Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Mine wastes and tailings are considered hazardous to human health because of their potential to generate large quantities of highly toxic emissions of particulate matter (PM). Human exposure to As and other trace metals in PM may occur via inhalation of airborne particulates or through ingestion of contaminated dust. This study describes a laboratory-based method for extracting PM2.5–10 (coarse) and PM2.5 (fine) particles from As-rich mine waste samples collected from an historical gold mining region in regional, Victoria, Australia. We also report on the trace metal and metalloid content of the coarse and fine fraction, with an emphasis on As as an element of potential concern. Laser diffraction analysis showed that the proportions of coarse and fine particles in the bulk samples ranged between 3.4–26.6 and 0.6–7.6 %, respectively. Arsenic concentrations were greater in the fine fraction (1680–26,100 mg kg−1) compared with the coarse fraction (1210–22,000 mg kg−1), and Co, Fe, Mn, Ni, Sb and Zn were found to be present in the fine fraction at levels around twice those occurring in the coarse. These results are of particular concern given that fine particles can accumulate in the human respiratory system. Our study demonstrates that mine wastes may be an important source of metal-enriched PM for mining communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Alleman, L. Y., Lamaison, L., Perdrix, E., Robache, A., & Galloo, J. (2010). PM10 metal concentrations and source identification using positive matrix factorization and wind sectoring in a French industrial zone. Atmospheric Research, 96(4), 612–625.

    Article  CAS  Google Scholar 

  • Asaoka, S., Takahashi, Y., Araki, Y., & Tanimizu, M. (2012). Comparison of antimony and arsenic behavior in an Ichinokawa River water-sediment system. Chemical Geology, 334, 1–8.

    Article  CAS  Google Scholar 

  • Becker, S., Dailey, L. A., Soukup, J. M., Grambow, S. C., Devlin, R. B., & Huang, Y. T. (2005). Seasonal variations in air pollution particle-induced inflammatory mediator release and oxidative stress. Environmental Health Perspectives, 113, 1032–1038.

    Article  CAS  Google Scholar 

  • Boisa, N., Entwistle, J., & Dean, J. R. (2014). A new simple, low-cost approach for generation of the PM10 fraction from soil and related materials: Application to human health risk assessment. Analytica Chimica Acta, 852, 97–104.

    Article  CAS  Google Scholar 

  • Carvacho, O. F., Ashbaugh, L. L., Brown, M. S., & Flocchini, R. G. (2004). Measurement of PM2.5 emission potential from soil using the UC Davis resuspension test chamber. Geomorphology, 59(1), 75–80.

    Article  Google Scholar 

  • Casiot, C., Ujevic, M., Munoz, M., Seidel, J. L., & Elbaz-Poulichet, F. (2007). Antimony and arsenic mobility in a creek draining an antimony mine abandoned 85 years ago (upper Orb basin, France). Applied Geochemistry, 22(4), 788–798.

    Article  CAS  Google Scholar 

  • Cohen, D. D. (1998). Characterisation of atmospheric fine particles using IBA techniques. Nuclear Instruments and Methods in Physics Research, B, 136–138, 14–22.

    Article  Google Scholar 

  • Csavina, J., Field, J., Taylor, M. P., Gao, S., Landazuri, A., Betterton, E. A., & Saez, A. E. (2012). A review on the importance of metals and metalloids in atmospheric dust and aerosol from mining operations. Science of the Total Environment, 433, 58–73.

    Article  CAS  Google Scholar 

  • Emmerson, K. M., Hibberd, M. F., Cope, M. E., & Holper, P. N. (2014). Air quality Australia: Future Research Directions—Symposium Report. Australia: CSIRO.

    Google Scholar 

  • Eneroth, E., & Koch, C. B. (2003). Crystallite size of haematite from thermal oxidation of pyrite and marcasite—Effects of grain size and iron disulphide polymorph. Minerals Engineering, 16(11), 1257–1267.

    Article  CAS  Google Scholar 

  • EPA South Australia. (2005). EPA guidelines: Composite soil sampling in site contamination assessment and management. Environment Protection Authority (South Australia). http://www.epa.sa.gov.au/xstd_files/Site%20contamination/Guideline/guide_composite.pdf. Accessed 16 Sept 2014.

  • ERMC. (2011). VI 3188: ERMC Grain size analysis using Malvern Mastersizer 2000. Environmental Radioactivity Measurement Centre (ERMC) method.

  • Fawcett, S. E., & Jamieson, H. E. (2011). The distinction between ore processing and post-depositional transformation on the speciation of arsenic and antimony in mine waste and sediment. Chemical Geology, 283(3), 109–118.

    Article  CAS  Google Scholar 

  • Fordham, A. W., & Norrish, K. (1979). Arsenate-73 uptake by components of several acidic soils and its implications for phosphate retention. Australian Journal of Soil Research, 17(2), 307–316.

    Article  CAS  Google Scholar 

  • Foster, A. L., Brown, G. E., Tingle, T. N., & Parks, G. A. (1998). Quantitative arsenic speciation in mine tailings using X-ray absorption spectroscopy. American Mineralogist, 83(5–6), 553–568.

  • Frost, R. R., & Griffin, R. A. (1977). Effect of pH on adsorption of arsenic and selenium from landfill leachate by clay minerals. Soil Science Society of America Journal, 41(1), 53–57.

    Article  CAS  Google Scholar 

  • Fuge, R. (2005). Anthropogenic sources. In O. Selinus, B. Alloway, J. A. Centeno, R. B. Finkelman, R. Fuge, U. Lindh, & P. Smedley (Eds.), Essentials of medical geology: Impacts of the natural environment on public health (pp. 43–60). Amsterdam: Elsevier Academic Press.

    Google Scholar 

  • Gill, T. E., Zobeck, T. M., & Stout, J. E. (2006). Technologies for laboratory generation of dust from geological materials. Journal of Hazardous Materials, 132(1), 1–13.

    Article  CAS  Google Scholar 

  • Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., & Zhao, M. (2012). Global-scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Reviews of Geophysics, 50(3), 1–36.

    Article  Google Scholar 

  • Gonzales, P., Felix, O., Alexander, C., Lutz, E., Ela, W., & Saez, A. E. (2014). Laboratory dust generation and size-dependent characterization of metal and metalloid-contaminated mine tailings deposits. Journal of Hazardous Materials, 280, 619–626.

    Article  CAS  Google Scholar 

  • Hiller, E., Lalinska, B., Chovan, M., Jurkovic, L., Klimko, T., Jankular, M., et al. (2012). Arsenic and antimony contamination of waters, stream sediments and soils in the vicinity of abandoned antimony mines in the Western Carpathians, Slovakia. Applied Geochemistry, 27(3), 598–614.

    Article  CAS  Google Scholar 

  • Hinwood, A. L., Sim, M. R., Jolley, D., de Klerk, N., Bastone, E. B., Gerostamoulos, J., & Drummer, O. H. (2004). Exposure to inorganic arsenic in soil increases urinary inorganic arsenic concentrations of residents living in old mining areas. Environmental Geochemistry and Health, 26(1), 27–36.

    Article  CAS  Google Scholar 

  • IARC. (2012). Monographs on the evaluation of the carcinogenic risks to humans: Arsenic, metals, fibers and dusts, volume 100 C. A review of human carcinogens (Vol. 100). Lyon: International Agency for Research on Cancer (IARC).

    Google Scholar 

  • Jamieson, H. E., Walker, S. R., Andrade, C. F., Wrye, L. A., Rasmussen, P. E., Lanzirotti, A., & Parsons, M. B. (2011). Identification and characterization of arsenic and metal compounds in contaminated soil, mine tailings, and house dust using synchrotron-based microanalysis. Human and Ecological Risk Assessment: An International Journal, 17(6), 1292–1309.

    Article  CAS  Google Scholar 

  • Jarup, L., Pershagen, G., & Wall, S. (1989). Cumulative arsenic exposure and lung cancer in smelter workers: A dose-response study. American Journal of Industrial Medicine, 15(1), 31–41.

    Article  CAS  Google Scholar 

  • Kelly, F. J., & Fussell, J. C. (2012). Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmospheric Environment, 60, 504–526.

    Article  CAS  Google Scholar 

  • Kim, C. S., Chi, C., Miller, S. R., Rosales, R. A., Sugihara, E. S., Akau, J., et al. (2013). (Micro) spectroscopic analyses of particle size dependence on arsenic distribution and speciation in mine wastes. Environmental Science and Technology, 47(15), 8164–8171.

    Article  CAS  Google Scholar 

  • Kim, C. S., Wilson, K. M., & Rytuba, J. J. (2011). Particle-size dependence on metal(loid) distributions in mine wastes: Implications for water contamination and human exposure. Applied Geochemistry, 26(4), 484–495.

    Article  CAS  Google Scholar 

  • Langmuir, D., Mahoney, J., & Rowson, J. (2006). Solubility products of amorphous ferric arsenate and crystalline scorodite (FeAsO4·2H2O) and their application to arsenic behavior in buried mine tailings. Geochimica et Cosmochimica Acta, 70(12), 2942–2956.

    Article  CAS  Google Scholar 

  • Laul, J. C. (1979). Neutron activation analysis of geological materials. Atomic Energy Review, 17(3), 603–695.

    CAS  Google Scholar 

  • Ljung, K., Torin, A., Smirk, M., Maley, F., Cook, A., & Weinstein, P. (2008). Extracting dust from soil: A simple solution to a tricky task. Science of the Total Environment, 407(1), 589–593.

    Article  CAS  Google Scholar 

  • Mamindy-Pajany, Y., Hurel, C., Marmier, N., & Romeo, M. (2011). Arsenic (V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: effects of pH, concentration and reversibility. Desalination, 281, 93–99.

    Article  CAS  Google Scholar 

  • Martin, R., Dowling, K., Pearce, D., Bennett, J., & Stopic, A. (2013). Ongoing soil arsenic exposure of children living in an historical gold mining area in regional Victoria, Australia: Identifying risk factors associated with uptake. Journal of Asian Earth Sciences, 77, 256–261.

    Google Scholar 

  • Martin, R., Dowling, K., Pearce, D. C., Florentine, S., Bennett, J. W., & Stopic, A. (2015). Size-dependent characterisation of historical gold mine wastes to examine human pathways of exposure to arsenic and other potentially toxic elements. Environmental Geochemistry and Health,. doi:10.1007/s10653-015-9775-z.

    Google Scholar 

  • McQueen, K. (2012). Early developments in treating pyritic and refractory gold ores in Australia. Journal of Australasian Mining History, 10, 88–102.

    Google Scholar 

  • Miller, F. J., Gardner, D. E., Graham, J. A., Lee, R. E, Jr, Wilson, W. E., & Bachmann, J. D. (1979). Size considerations for establishing a standard for inhalable particles. Journal of the Air Pollution Control Association, 29(6), 610–615.

    Article  CAS  Google Scholar 

  • Moreno, T., Oldroyd, A., McDonald, I., & Gibbons, W. (2007). Preferential fractionation of trace metals–metalloids into PM10 resuspended from contaminated gold mine tailings at Rodalquilar, Spain. Water, Air, and Soil pollution, 179(1–4), 93–105.

    Article  CAS  Google Scholar 

  • Mullins, M. J., & Norman, J. B. (1994). Solubility of metals in windblown dust from mine waste dump sites. Applied Occupational and Environmental Hygiene, 9(3), 218–223.

    Article  CAS  Google Scholar 

  • NRC. (2004). Research Priorities for Airborne Particulate Matter: IV. Continuing Research Progress. National Research Council. Washington, DC: National Academies Press.

    Google Scholar 

  • Pacyna, J. M., & Pacyna, E. G. (2001). An assessment of global and regional emissions of trace metals to the atmosphere from anthropogenic sources worldwide. Environmental Reviews, 9(4), 269–298.

    Article  CAS  Google Scholar 

  • Pearce, D. C., Dowling, K., Gerson, A. R., Sim, M. R., Sutton, S. R., Newville, M., et al. (2010). Arsenic microdistribution and speciation in toenail clippings of children living in a historic gold mining area. Science of the Total Environment, 408(12), 2590–2599.

    Article  CAS  Google Scholar 

  • Plumlee, G. S., & Ziegler, T. L. (2007). The medical geochemistry of dusts, soils and other earth materials. In B. S. Lollar, H. D. Holland, & K. K. Turekian (Eds.), Environmental geochemistry: Treatise on geochemistry (Vol. 9, pp. 263–310). Oxford: Elsevier Ltd.

    Google Scholar 

  • Radojkovic, A.M., & Bibby, L.M. (2003). The regolith of the Ballarat-Creswick area. Victorian Initiative for Minerals and Petroleum Report 76. Department of Natural Resources and Environment. http://dpistore.efirst.com.au/product.asp?pID=534&cID=8. Accessed 10 July 2014.

  • Roussel, C., Neel, C., & Bril, H. (2000). Minerals controlling arsenic and lead solubility in an abandoned gold mine tailings. Science of the Total Environment, 263(1), 209–219.

    Article  CAS  Google Scholar 

  • Ruby, M. V., Schoof, R., Brattin, W., Goldade, M., Post, G., Harnois, M., et al. (1999). Advances in evaluating the oral bioavailability of inorganics in soil for use in human health risk assessment. Environmental Science and Technology, 33(21), 3697–3705.

    Article  CAS  Google Scholar 

  • Smith, E., Weber, J., & Juhasz, A. L. (2009). Arsenic distribution and bioaccessibility across particle fractions in historically contaminated soils. Environmental Geochemistry and Health, 31(1), 85–92.

    Article  CAS  Google Scholar 

  • Tighe, M., Ashley, P., Lockwood, P., & Wilson, S. (2005). Soil, water, and pasture enrichment of antimony and arsenic within a coastal floodplain system. Science of the Total Environment, 347(1), 175–186.

    Article  CAS  Google Scholar 

  • Walker, S. R., Jamieson, H. E., Lanzirotti, A., Andrade, C. F., & Hall, G. E. M. (2005). The speciation of arsenic in iron oxides in mine wastes from the Giant Gold Mine, N.W.T.: Application of synchrotron micro-XRD and micro-XANES at the grain scale. The Canadian Mineralogist, 43(4), 1205–1224.

    Article  CAS  Google Scholar 

  • WHO. (2000). Particulate Matter, Chapter 7.3. World Health Organisation (WHO) Regional Publications, Copenhagen, Denmark. http://www.euro.who.int/__data/assets/pdf_file/0019/123085/AQG2ndEd_7_3Particulate-matter.pdf. Accessed 19 May 2015.

  • Zota, A. R., Willis, R., Jim, R., Norris, G. A., Shine, J. P., Duvall, R. M., et al. (2009). Impact of mine waste on airborne respirable particulates in northeastern Oklahoma, United States. Journal of the Air and Waste Management Association, 59(11), 1347–1357.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

R. Martin is supported by Federation University Australia through an Australian Postgraduate Award and is partially funded by the Collaborative Research Network established at Federation University Australia. The authors would like to thank the Australian Institute of Nuclear Science and Engineering (AINSE) Ltd for providing financial and technical assistance (AWARD-PGRA) to enable work on the sample preparation and chemical analysis components of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachael Martin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martin, R., Dowling, K., Pearce, D.C. et al. Trace metal content in inhalable particulate matter (PM2.5–10 and PM2.5) collected from historical mine waste deposits using a laboratory-based approach. Environ Geochem Health 39, 549–563 (2017). https://doi.org/10.1007/s10653-016-9833-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-016-9833-1

Keywords

Navigation