Skip to main content

Advertisement

Log in

Ecological risk assessment of mercury and chromium in greenhouse soils

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Very little information is available about Hg and Cr evolution in greenhouse soils. This paper presents the results of determining Hg and Cr in greenhouse soils in a semi-arid region in the southern Iberian Peninsula (Almería, Spain), and assessing the enrichment level and the Potential Ecological Risk Index (PERI) according to crop age. Hakanson’s approach was used to evaluate the PERI. To investigate the behaviour of Hg and Cr in greenhouse soils over time, samples were grouped into values in soils for blocks according to crop age: 0 years, 5–10 years, 10–20 years, more than 20 years. The results showed that 74% of GS exceeded the obtained background level (37.1 μg kg−1) for Hg, with 43% (48.9 mg kg−1) for Cr. Temporal patterns indicated that these elements are accumulating in greenhouse soils and this trend was very significant for Hg. After more than 20 intensive crop-farming years, concentrations and the PERI had clearly increased. Although the ecological risk was moderate, our observations suggest that the farming practices performed in the last 35 years have allowed these metals to accumulate. In fact, the 15% of the studied soils presented a considerable potential risk and were the soils that had been used longer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adriano, D. C. (2001). Trace elements in terrestrial environments: Biogeochemistry, bioavailability and risks of metals (2nd ed.). New York: Springer.

    Google Scholar 

  • Campisano, R., Hall, K., Griggs, J., Willison, S., Reimer, S., Mash, H., et al. (2017). Selected analytical methods for environmental remediation and recovery (SAM). Washington, DC: U.S. Environmental Protection Agency. https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NHSRC&dirEntryId=339252. Accessed 16 Oct 2018.

  • Campos, J. A., Esbrí, J. M., Madrid, M. M., Naharro, R., Peco, J., García-Noguero, E. M., et al. (2018). Does mercury presence in soils promote their microbial activity? The Almadenejos case (Almadén mercury mining district, Spain). Chemosphere,201, 799–806.

    CAS  Google Scholar 

  • Chen, M., Lena, Q., & Harris, W. G. (1999). Baseline concentrations of 15 trace elements in Florida surface soils. Journal of Environmental Quality,28, 1173–1181.

    CAS  Google Scholar 

  • Chumbley, C. G. (1971). Permisible levels of toxic metals in sewage used on agricultural land. London: ADAS, MAFF.

    Google Scholar 

  • Di Giuseppe, D., Vittori-Antisari, L., Ferronato, C., & Bianchini, G. (2014). New insights on mobility and bioavailability of heavy metals in soils of the Padanian alluvial plain (Ferrara Province, northern Italy). Chemie der Erde-Geochemistry,74, 615–623. https://doi.org/10.1016/j.chemer.2014.02.004.

    Article  CAS  Google Scholar 

  • Dudka, S., Ponce-Hernández, R., & Hutchinson, T. C. (1995). Current level of total element concentrations in the surface layer of Sudbury´s soils. Science of the Total Environment,162, 161–171.

    Google Scholar 

  • Duodu, G. O., Goonetilleke, A., & Godwin, A. A. (2016). Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environmental Pollution,219, 1077–1091.

    CAS  Google Scholar 

  • El-Alam, I., Verdin, A., Fontaine, J., Laruelle, F., Chahine, R., Makhlouf, H., et al. (2018). Ecotoxicity evaluation and human risk assessment of an agricultural polluted soil. Environmental Monitoring and Assessment,190(12), 738.

    Google Scholar 

  • Facchinelli, A., Sacchi, E., & Mallen, L. (2001). Multivariate statistical and GIS-based approach to identify heavy metal sources in soils. Environmental Pollution,114, 313–324.

    CAS  Google Scholar 

  • Gil, C., Boluda, R., & Ramos, J. (2004). Determination and evaluation of cadmium lead and nickel in greenhouse soils of Almería (Spain). Chemosphere,55(7), 1027–1034.

    CAS  Google Scholar 

  • Gil, C., Boluda, R., Rodríguez Martín, J. A., Guzmán, M., del Moral, F., & Ramos-Miras, J. (2018). Assessing soil contamination and temporal trends of heavy metal contents in greenhouses on semiarid land. Land Degradation and Development,29(18), 3344–3354. https://doi.org/10.1002/ldr.3094.

    Article  Google Scholar 

  • Gil, C., Ramos-Miras, J., Roca-Perez, L., & Boluda, R. (2010). Determination and assessment of mercury content in calcareous soils. Chemosphere,78(4), 409–415.

    CAS  Google Scholar 

  • Gimeno-García, E., Andreu, V., & Boluda, R. (1996). Heavy metals incidence in the application of fertilizers and pesticides in rice farming soils. Environmental Pollution,92(1), 19–25.

    Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research,14(8), 975–1001.

    Google Scholar 

  • Higueras, P., Oyarzun, R., Lillo, J., Sánchez-Hernádez, J. C., Molina, J. A., Esbrí, J. M., et al. (2006). The Almaden district (Spain): Anatomy of one world´s largest Hg-contaminated sites. Science of the Total Environment,365, 112–124.

    Google Scholar 

  • Hseu, Z. Y., Zehetner, F., Fujii, K., Watanabe, T., & Nakao, A. (2018). Geochemical fractionation of chromium and nickel in serpentine soil profiles along a temperate to tropical gradient. Geoderma,327, 97–106.

    CAS  Google Scholar 

  • Jia, M., Zhang, Y., Huang, B., & Zhang, H. (2019). Source apportionment of selenium and influence factors on its bioavailability in intensively managed greenhouse soil: A case study in the east bank of the Dianchi Lake, China. Ecotoxicology and Environmental Safety,170, 238–245.

    CAS  Google Scholar 

  • Jing, Y. D., He, Z. L., & Yang, X. E. (2007). Effects of pH, organic acids, and competitive cations on mercury desorption in soils. Chemosphere,69, 1662–1669.

    CAS  Google Scholar 

  • Jones, A., Panagos, P., Barcelo, S., Bouraqui, F., Bosco C., Dewitte, O., et al. (2012). The State of Soil in Europe: A contribution of the JRC to the European Environment Agency’s Environment State and Outlook Report-SOER 2010. Resource document: The European Commission’s science and knowledge service. http://publications.jrc.ec.europa.eu/repository/bitstream/JRC68418/lbna25186enn.pdf. Accessed February 1, 2019.

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Ke, X., Gui, S., Huang, H., Zhang, H., Wang, C., & Guo, W. (2017). Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere,175, 473–481.

    CAS  Google Scholar 

  • Li, Q., Ji, H., Qin, F., Tang, L., Guo, X., & Feng, J. (2014). Sources and the distribution of heavy metals in the particle size of soil polluted by gold mining upstream of Miyun Reservoir, Beijing: Implications for assessing the potential risks. Environmental Monitoring and Assessment,186, 6605–6626.

    CAS  Google Scholar 

  • Lv, J. (2019). Multivariate receptor models and robust geostatistics to estimate source apportionment of heavy metals in soils. Environmental Pollution,244, 72–83.

    CAS  Google Scholar 

  • Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere,65, 863–872.

    Google Scholar 

  • Nielsen, S. S., Kjeldsen, P., Hansen, H. C. B., & Jakobsen, R. (2014). Transformation of natural ferrihydrite aged in situ in As, Cr and Cu contaminated soil studied by reduction kinetics. Applied Geochemistry,51, 293–302.

    CAS  Google Scholar 

  • Nuñez, O., Fernández-Navarro, P., Martín-Méndez, I., Bel-Lan, A., Locutura- Rupérez, J. F., & López-Abente, G. (2017). Association between heavy metal and metalloid levels in topsoil and cancer mortality in Spain. Environmental Science and Pollution Research,24, 7413–7421.

    Google Scholar 

  • Ramos-Miras, J. J., Gil, C., & Boluda, R. (2002). Estudio de las características de los antrosolescumúlicos en los invernaderos de la comarca del Poniente Almeriense. Influencia de las prácticas agrícolas sobre los cambios de sus propiedades. Edafología,9, 129–142.

    Google Scholar 

  • Ramos-Miras, J. J., Gil, C., Roca-Pérez, L., & Boluda, R. (2012). Content and evolution of mercury in greenhouse soils of Almeria, Spain. Acta Agriculturae,927, 821–826.

    Google Scholar 

  • Ramos-Miras, J. J., Roca-Pérez, L., Guzmán-Palomino, M., Boluda, R., & Gil, C. (2011). Background levels and baseline values of available heavy metals in Mediterranean greenhouse soils (Spain). Journal of Geochemical Exploration,110, 186–192.

    CAS  Google Scholar 

  • Rastmanesh, F., Safaie, S., Zarasvandi, A. R., & Edraki, M. (2018). Heavy metal enrichment and ecological risk assessment of surface sediments in Khorramabad River, West Iran. Environmental Monitoring and Assessment,190, 273.

    CAS  Google Scholar 

  • Roca-Perez, L., Gil, C., Cervera, M., Gonzálvez, A., Ramos-Miras, J., Pons, V., et al. (2010). Selenium and heavy metals content in some Mediterranean soils. Journal of Geochemical Exploration,107, 110–116.

    CAS  Google Scholar 

  • Roca-Pérez, L., Pérez-Bermúdez, P., & Boluda, R. (2002). Soil characteristics, mineral nutrients, biomass, and cardenolide production in Digitalis obscura wild populations. Journal of Plant Nutrition,25, 2015–2026.

    Google Scholar 

  • Rodriguez, J. A., Nanos, N., Grau, J. M., Gil, L., & Lopez-Arias, M. (2008). Heavy metals contents in agricultural topsoil in the Ebro basin. Application of multivariate geoestatistical methods to study spatial variations. Environmental Pollution,144, 1001–1012.

    Google Scholar 

  • Rodríguez-Martín, J. A., Carbonell, G., López, M., & Grau, J. M. (2009). Mercury content in topsoils, and geostatistical methods to identify anthropogenic input in the Ebro basin (Spain). Spanish Journal of Agricultural Research,7, 155–166.

    Google Scholar 

  • Rodríguez-Martín, J. A., Ramos-Miras, J. J., Boluda, R., & Gil, C. (2013). Spatial relations of heavy metals in arable and greenhouse soils of a Mediterranean environment region (Spain). Geoderma,200–201, 180–188.

    Google Scholar 

  • Sánchez-Báscones, M., Antolín-Rodríguez, J. M., Martín-Ramos, P., González-González, A., Bravo-Sánchez, C. T., & Martín-Gil, J. (2017). Evolution of mercury content in agricultural soils due to the application of organic and mineral fertilizers. Journal of Soils and Sediments,17(4), 927–935.

    Google Scholar 

  • Shanker, A. K., Cervantes, C., Loza-Tavera, H., & Avudainayagam, S. (2005). Chromium toxicity in plants. Environment International,31, 739–753.

    CAS  Google Scholar 

  • Singh, S., Srivastava, P. K., Kumar, D., Tripathi, D. K., Chauhan, D. K., & Prasad, S. M. (2015). Morpho-anatomical and biochemical adapting strategies of maize (Zea mays L.) seedlings against lead and chromium stresses. Biocatalysis and Agricultural Biotechnology,4, 286–295.

    Google Scholar 

  • Tack, F. M. G., Vanhaesebroeck, T., Verloo, M. G., Van Rompaey, K., & Van Ranst, E. (2005). Mercury baseline levels in Flemish soils (Belgium). Environmental Pollution,34, 173–179.

    Google Scholar 

  • Vernay, P., Gauthier-Moussard, C., & Hitmi, A. (2007). Interaction of bioaccumulation of heavy metal chromium with water relation, mineral nutrition and photosynthesis in developed leaves of Loliumperenne L. Chemosphere,68, 1563–1575.

    CAS  Google Scholar 

  • Wang, G., & Fowler, B. A. (2008). Roles of biomarkers in evaluating interactions among mixtures of lead, cadmium and arsenic. Toxicology and Applied Pharmacology,233, 92–99.

    CAS  Google Scholar 

  • Wieczorek, J., Baran, A., Urbanski, K., Mazurek, R., & Klimowicz-Pawlas, A. (2018). Assessment of the pollution and ecological risk of lead and cadmium in soils. EnvironmentalGeochemistry and Health,40, 2325–2342.

    CAS  Google Scholar 

  • Yang, Y., Jin, Q., Fang, J., Liu, F., Li, A., Tandon, P., et al. (2017). Spatial distribution, ecological risk assessment, and potential sources of heavy metal(loid)s in surface sediments from the Huai River within the Bengbu section, China. Environmental Science and Pollution Research,24(12), 11360–11370.

    CAS  Google Scholar 

  • Yuan, G. L., Sun, T. H., Li, P. H. J., & Lang, X. X. (2014). Source identification and ecological risk assessment of heavy metals in topsoil using environmental geochemical mapping: Typical urban renewal area in Beijing, China. Journal of Geochemical Exploration,136, 40–47.

    CAS  Google Scholar 

  • Zhuang, W., Liu, Y., Chen, Q., Wang, Q., & Zhou, F. (2016). A new index for assessing heavy metal contamination in sediments of the Beijing–Hangzhou Grand Canal (Zaozhuang Segment): A case study. Ecological Indicators,69, 252–260.

    CAS  Google Scholar 

Download references

Acknowledgements

This research was sponsored by the Spanish Ministry of Science and Innovation, Projects AGL2011-29382 and CGL2013-43675-P.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafael Boluda.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos-Miras, J.J., Gil, C., Rodríguez Martín, J.A. et al. Ecological risk assessment of mercury and chromium in greenhouse soils. Environ Geochem Health 42, 313–324 (2020). https://doi.org/10.1007/s10653-019-00354-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00354-y

Keywords

Navigation