Skip to main content
Log in

The influence of the industrial area on the pollution outside its borders: a case study from Quintero and Puchuncavi districts, Chile

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The specific objectives of this study were: (1) to establish background content levels of potentially harmful elements in topsoil of Quintero and Puchuncavi districts; (2) to assess the degree of topsoil pollution and identify the local sources of pollution; and (3) to assess the health risk of metal exposure to population. Data from a Chilean Environmental Ministry report were analyzed. Multivariate analysis suggests that the potentially harmful elements are split into two main groups, which can be explained by controlling geogenic (Ni, V and Zn) and anthropogenic (As, Cd, Cu and Pb) factors. The spatial distribution of As, Cd, Cu and Pb displays a spatial pattern around the Puchuncavi-Ventanas industrial park. The background values determined with MAD (median absolute deviation) method include As 31.6 mg kg−1, Cd 0.7 mg kg−1, Cu 296 mg kg−1, Ni 16.9 mg kg−1, Pb 48.6 mg kg−1, V 199 mg kg−1 and Zn 192 mg kg−1. The pollution indices reported considerable contamination to very high contamination in some soil samples. Hazard quotient values were higher for children than for adults, due to the ingestion and dermal absorption, while the cancer risk index values were in the acceptable range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahumada, I., Escudero, P., Ascar, L., Mendoza, J., & Richter, P. (2004). Extractability of arsenic, copper, and lead in soils of a mining and agricultural zone in central Chile. Communications in Soil Science and Plant Analysis,35(11–12), 1615–1634. https://doi.org/10.1081/css-120038558.

    Article  CAS  Google Scholar 

  • Aitchison, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical Society: Series B (Methodological),44(2), 139–177.

    Google Scholar 

  • Ajmone-Marsan, F., & Biasioli, M. (2010). Trace elements in soils of urban areas. Water, Air, and Soil Pollution,213(1–4), 121–143. https://doi.org/10.1007/s11270-010-0372-6.

    Article  CAS  Google Scholar 

  • Akopyan, K., Petrosyan, V., Grigoryan, R., & Melkom Melkomian, D. (2018). Assessment of residential soil contamination with arsenic and lead in mining and smelting towns of northern Armenia. Journal of Geochemical Exploration,184, 97–109. https://doi.org/10.1016/j.gexplo.2017.10.010.

    Article  CAS  Google Scholar 

  • Alsbou, E. M. E., & Al-Khashman, O. A. (2017). Heavy metal concentrations in roadside soil and street dust from Petra region, Jordan. Environmental Monitoring and Assessment,190(1), 48. https://doi.org/10.1007/s10661-017-6409-1.

    Article  CAS  Google Scholar 

  • Biasioli, M., Barberis, R., & Ajmone-Marsan, F. (2006). The influence of a large city on some soil properties and metals content. Science of the Total Environment,356(1), 154–164. https://doi.org/10.1016/j.scitotenv.2005.04.033.

    Article  CAS  Google Scholar 

  • Bini, C., & Bech, J. (2014). PHEs, environment and human health. Dordrecht: Springer.

    Book  Google Scholar 

  • Birke, M., & Rauch, U. (2000). Urban geochemistry: investigations in the Berlin metropolitan area. Environmental Geochemistry and Health,22(3), 233–248. https://doi.org/10.1023/A:1026554308673.

    Article  CAS  Google Scholar 

  • Boogaart, K. G., & Tolosana-Delgado, R. (2013). Analyzing compositional data with R. Berlin: Springer.

    Book  Google Scholar 

  • Burt, R., Wilson, M. A., Keck, T. J., Dougherty, B. D., Strom, D. E., & Lindahl, J. A. (2003). Trace element speciation in selected smelter-contaminated soils in Anaconda and Deer Lodge Valley, Montana, USA. Advances in Environmental Research,8(1), 51–67. https://doi.org/10.1016/S1093-0191(02)00140-5.

    Article  CAS  Google Scholar 

  • Cachada, A., Dias, A. C., Pato, P., Mieiro, C., Rocha-Santos, T., Pereira, M. E., et al. (2013). Major inputs and mobility of potentially toxic elements contamination in urban areas. Environmental Monitoring and Assessment,185(1), 279–294. https://doi.org/10.1007/s10661-012-2553-9.

    Article  CAS  Google Scholar 

  • Caeiro, S., Costa, M. H., Ramos, T. B., Fernandes, F., Silveira, N., Coimbra, A., et al. (2005). Assessing heavy metal contamination in Sado Estuary sediment: An index analysis approach. Ecological Indicators,5(2), 151–169. https://doi.org/10.1016/j.ecolind.2005.02.001.

    Article  CAS  Google Scholar 

  • Çayır, A., Belivermiş, M., Kılıç, Ö., Coşkun, M., & Coşkun, M. (2012). Heavy metal and radionuclide levels in soil around Afsin-Elbistan coal-fired thermal power plants, Turkey. Environmental Earth Sciences,67(4), 1183–1190. https://doi.org/10.1007/s12665-012-1561-y.

    Article  CAS  Google Scholar 

  • CEM. (2016). Soil sampling for Quintero and Puchuncavi districts (p. 125). Chile: CEM.

    Google Scholar 

  • Chen, H., Teng, Y., Lu, S., Wang, Y., Wu, J., & Wang, J. (2016). Source apportionment and health risk assessment of trace metals in surface soils of Beijing metropolitan, China. Chemosphere,144(Supplement C), 1002–1011. https://doi.org/10.1016/j.chemosphere.2015.09.081.

    Article  CAS  Google Scholar 

  • Cheng, H., Li, M., Zhao, C., Li, K., Peng, M., Qin, A., et al. (2014). Overview of trace metals in the urban soil of 31 metropolises in China. Journal of Geochemical Exploration,139, 31–52. https://doi.org/10.1016/j.gexplo.2013.08.012.

    Article  CAS  Google Scholar 

  • Chiang, J., Cornejo, P., López, J., Romano, S., Pascual, J., & Cea, M. (1985). Determinación de cadmio, cobre, manganeso, plomo, hierro, cinc y arsénico en sedimento atmosférico, en la zona de Quintero, V Región, Valparaíso, Chile. Sociedad Chilena de Química,30, 139–158.

    Google Scholar 

  • Cicchella, D., Giaccio, L., Lima, A., Albanese, S., Cosenza, A., Civitillo, D., et al. (2014). Assessment of the topsoil heavy metals pollution in the Sarno River basin, south Italy. Environmental Earth Sciences,71(12), 5129–5143. https://doi.org/10.1007/s12665-013-2916-8.

    Article  CAS  Google Scholar 

  • Corradini, F., Meza, F., & Calderón, R. (2017). Trace element content in soil after a sediment-laden flood in northern Chile. Journal of Soils and Sediments,17(10), 2500–2515. https://doi.org/10.1007/s11368-017-1687-3.

    Article  CAS  Google Scholar 

  • De Gregori, I., Fuentes, E., Rojas, M., Pinochet, H., & Potin-Gautier, M. (2003). Monitoring of copper, arsenic and antimony levels in agricultural soils impacted and non-impacted by mining activities, from three regions in Chile. Journal of Environmental Monitoring,5(2), 287–295. https://doi.org/10.1039/B211469K.

    Article  Google Scholar 

  • De Miguel, E., Iribarren, I., Chacón, E., Ordoñez, A., & Charlesworth, S. (2007). Risk-based evaluation of the exposure of children to trace elements in playgrounds in Madrid (Spain). Chemosphere,66(3), 505–513. https://doi.org/10.1016/j.chemosphere.2006.05.065.

    Article  CAS  Google Scholar 

  • De Miguel, E., Mingot, J., Chacón, E., & Charlesworth, S. (2012). The relationship between soil geochemistry and the bioaccessibility of trace elements in playground soil. Environmental Geochemistry and Health,34(6), 677–687. https://doi.org/10.1007/s10653-012-9486-7.

    Article  CAS  Google Scholar 

  • Ettler, V., Mihaljevič, M., Kříbek, B., Majer, V., & Šebek, O. (2011). Tracing the spatial distribution and mobility of metal/metalloid contaminants in Oxisols in the vicinity of the Nkana copper smelter, Copperbelt province, Zambia. Geoderma,164(1), 73–84. https://doi.org/10.1016/j.geoderma.2011.05.014.

    Article  CAS  Google Scholar 

  • Ferreira-Baptista, L., & De Miguel, E. (2005). Geochemistry and risk assessment of street dust in Luanda, Angola: A tropical urban environment. Atmospheric Environment,39(25), 4501–4512. https://doi.org/10.1016/j.atmosenv.2005.03.026.

    Article  CAS  Google Scholar 

  • Gabarrón, M., Faz, A., & Acosta, J. (2017). Soil or dust for health risk assessment studies in urban environment. Archives of Environmental Contamination and Toxicology,73(3), 442–455.

    Article  Google Scholar 

  • Gaberšek, M., & Gosar, M. (2018). Geochemistry of urban soil in the industrial town of Maribor, Slovenia. Journal of Geochemical Exploration,187, 141–154. https://doi.org/10.1016/j.gexplo.2017.06.001.

    Article  CAS  Google Scholar 

  • Ginocchio, R., Carvallo, G., Toro, I., Bustamante, E., Silva, Y., & Sepúlveda, N. (2004). Micro-spatial variation of soil metal pollution and plant recruitment near a copper smelter in Central Chile. Environmental Pollution,127(3), 343–352. https://doi.org/10.1016/j.envpol.2003.08.020.

    Article  CAS  Google Scholar 

  • González, S. (1992). Acumulación metálica en suelos del área bajo influencia de las chimeneas industriales de Ventanas (Provincia Valparaiso) V Región. Agricultura Técnica (Chile),50(2), 214–221s.

    Google Scholar 

  • González, S., & Bergqvist, E. (1986). Evidencias de contaminación con metales pesados en un sector del secano costero de la V Región. Agricultura Técnica,46(3), 299–306.

    Google Scholar 

  • Guagliardi, I., Cicchella, D., De Rosa, R., & Buttafuoco, G. (2015). Assessment of lead pollution in topsoils of a southern Italy area: Analysis of urban and peri-urban environment. Journal of Environmental Sciences,33, 179–187. https://doi.org/10.1016/j.jes.2014.12.025.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research,14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.

    Article  Google Scholar 

  • Inengite, A., Abasi, C., & Walter, C. (2015). Application of pollution indices for the assessment of heavy metal pollution in flood impacted soil. International Research Journal of Pure & Applied Chemistry,8, 175–189.

    Article  CAS  Google Scholar 

  • Kierczak, J., Potysz, A., Pietranik, A., Tyszka, R., Modelska, M., Néel, C., et al. (2013). Environmental impact of the historical Cu smelting in the Rudawy Janowickie Mountains (south-western Poland). Journal of Geochemical Exploration,124, 183–194. https://doi.org/10.1016/j.gexplo.2012.09.008.

    Article  CAS  Google Scholar 

  • Kowalska, J., Mazurek, R., Gąsiorek, M., Setlak, M., Zaleski, T., & Waroszewski, J. (2016). Soil pollution indices conditioned by medieval metallurgical activity – A case study from Krakow (Poland). Environmental Pollution,218, 1023–1036. https://doi.org/10.1016/j.envpol.2016.08.053.

    Article  CAS  Google Scholar 

  • Kowalska, J. B., Mazurek, R., Gąsiorek, M., & Zaleski, T. (2018). Pollution indices as useful tools for the comprehensive evaluation of the degree of soil contamination–a review. Environmental Geochemistry and Health. https://doi.org/10.1007/s10653-018-0106-z.

    Article  Google Scholar 

  • Li, G., Sun, G. X., Ren, Y., Luo, X. S., & Zhu, Y. G. (2018). Urban soil and human health: A review. European Journal of Soil Science,69, 196–215.

    Article  Google Scholar 

  • Lu, X., Liu, W., Zhao, C., & Chen, C. (2013). Environmental assessment of heavy metal and natural radioactivity in soil around a coal-fired power plant in China. Journal of Radioanalytical and Nuclear Chemistry,295(3), 1845–1854. https://doi.org/10.1007/s10967-012-2241-9.

    Article  CAS  Google Scholar 

  • Lu, X., Wu, X., Wang, Y., Chen, H., Gao, P., & Fu, Y. (2014). Risk assessment of toxic metals in street dust from a medium-sized industrial city of China. Ecotoxicology and Environmental Safety,106, 154–163. https://doi.org/10.1016/j.ecoenv.2014.04.022.

    Article  CAS  Google Scholar 

  • Man, Y. B., Sun, X. L., Zhao, Y. G., Lopez, B. N., Chung, S. S., Wu, S. C., et al. (2010). Health risk assessment of abandoned agricultural soils based on heavy metal contents in Hong Kong, the world's most populated city. Environment International,36(6), 570–576. https://doi.org/10.1016/j.envint.2010.04.014.

    Article  CAS  Google Scholar 

  • Mazurek, R., Kowalska, J., Gąsiorek, M., Zadrożny, P., Józefowska, A., Zaleski, T., et al. (2017). Assessment of heavy metals contamination in surface layers of Roztocze National Park forest soils (SE Poland) by indices of pollution. Chemosphere,168, 839–850. https://doi.org/10.1016/j.chemosphere.2016.10.126.

    Article  CAS  Google Scholar 

  • Müller, G. (1969). Index of geoaccumulation in sediments of the Rhine River. GeoJournal,2, 108–118.

    Google Scholar 

  • Neaman, A., Huerta, S., & Sauvé, S. (2012). Effects of lime and compost on earthworm (Eisenia fetida) reproduction in copper and arsenic contaminated soils from the Puchuncaví Valley, Chile. Ecotoxicology and Environmental Safety,80, 386–392. https://doi.org/10.1016/j.ecoenv.2012.04.013.

    Article  CAS  Google Scholar 

  • Neaman, A., Reyes, L., Trolard, F., Bourrié, G., & Sauvé, S. (2009). Copper mobility in contaminated soils of the Puchuncaví valley, central Chile. Geoderma,150(3), 359–366. https://doi.org/10.1016/j.geoderma.2009.02.017.

    Article  CAS  Google Scholar 

  • Parra, S., Bravo, M. A., Quiroz, W., Moreno, T., Karanasiou, A., Font, O., et al. (2014). Distribution of trace elements in particle size fractions for contaminated soils by a copper smelting from different zones of the Puchuncaví Valley (Chile). Chemosphere,111, 513–521. https://doi.org/10.1016/j.chemosphere.2014.03.127.

    Article  CAS  Google Scholar 

  • Pawlowsky-Glahn, V., & Egozcue, J. J. (2006). Compositional data and their analysis: An introduction. Geological Society,264(1), 1–10. https://doi.org/10.1144/gsl.sp.2006.264.01.01.

    Article  CAS  Google Scholar 

  • Qingjie, G., Jun, D., Yunchuan, X., Qingfei, W., & Liqiang, Y. (2008). Calculating pollution indices by heavy metals in ecological geochemistry assessment and a case study in parks of Beijing. Journal of China University of Geosciences,19(3), 230–241. https://doi.org/10.1016/S1002-0705(08)60042-4.

    Article  Google Scholar 

  • Ramos, T. B., Caeiro, S., & de Melo, J. J. (2004). Environmental indicator frameworks to design and assess environmental monitoring programs. Impact Assessment and Project Appraisal,22(1), 47–62. https://doi.org/10.3152/147154604781766111.

    Article  Google Scholar 

  • Reimann, C., Filzmoser, P., Fabian, K., Hron, K., Birke, M., Demetriades, A., et al. (2012). The concept of compositional data analysis in practice—total major element concentrations in agricultural and grazing land soils of Europe. Science of the Total Environment,426(Supplement C), 196–210. https://doi.org/10.1016/j.scitotenv.2012.02.032.

    Article  CAS  Google Scholar 

  • Reimann, C., Filzmoser, P., & Garrett, R. G. (2005). Background and threshold: Critical comparison of methods of determination. Science of the Total Environment,346(1–3), 1–16. https://doi.org/10.1016/j.scitotenv.2004.11.023.

    Article  CAS  Google Scholar 

  • Reimann, C., Filzmoser, P., Garrett, R. G., & Dutter, R. (2008). Statistical data analysis explained: applied environmental statistics with R. Chichester: Wiley. ISBN 9780470985816.

    Book  Google Scholar 

  • Rivano, S., Sepulveda, P., Boric, R., & Espiñeira, D. (1993). Hojas Quillota y Portillo, V Región. Carta geologica de Chile. Chile: Servicio Nacional de Geología y Minería.

    Google Scholar 

  • Rueda-Holgado, F., Calvo-Blázquez, L., Cereceda-Balic, F., & Pinilla-Gil, E. (2016). Temporal and spatial variation of trace elements in atmospheric deposition around the industrial area of Puchuncaví-Ventanas (Chile) and its influence on exceedances of lead and cadmium critical loads in soils. Chemosphere,144, 1788–1796. https://doi.org/10.1016/j.chemosphere.2015.10.079.

    Article  CAS  Google Scholar 

  • Salmani-Ghabeshi, S., Palomo-Marín, M. R., Bernalte, E., Rueda-Holgado, F., Miró-Rodríguez, C., Cereceda-Balic, F., et al. (2016). Spatial gradient of human health risk from exposure to trace elements and radioactive pollutants in soils at the Puchuncaví-Ventanas industrial complex, Chile. Environmental Pollution,218, 322–330. https://doi.org/10.1016/j.envpol.2016.07.007.

    Article  CAS  Google Scholar 

  • Salmanighabeshi, S., Palomo-Marín, M. R., Bernalte, E., Rueda-Holgado, F., Miró-Rodríguez, C., Fadic-Ruiz, X., et al. (2015). Long-term assessment of ecological risk from deposition of elemental pollutants in the vicinity of the industrial area of Puchuncaví-Ventanas, central Chile. Science of the Total Environment,527–528, 335–343. https://doi.org/10.1016/j.scitotenv.2015.05.010.

    Article  CAS  Google Scholar 

  • Sepulveda, P., & Rivano, S. (1991). Hoja Illapel: Región de Coquimbo. Carta geologica de Chile. Chile: Servicio Nacional de Geología y Minería.

    Google Scholar 

  • Tanić, M. N., Ćujić, M. R., Gajić, B. A., Daković, M. Z., & Dragović, S. D. (2018). Content of the potentially harmful elements in soil around the major coal-fired power plant in Serbia: Relation to soil characteristics, evaluation of spatial distribution and source apportionment. Environmental Earth Sciences,77(1), 28. https://doi.org/10.1007/s12665-017-7214-4.

    Article  CAS  Google Scholar 

  • Templ, M., Hron, K., Filzmoser, P., & Templ, M. M. (2016). Package ‘robCompositions’. alr, 10, 145.

  • Teng, Y., Ni, S., Wang, J., Zuo, R., & Yang, J. (2010). A geochemical survey of trace elements in agricultural and non-agricultural topsoil in Dexing area, China. Journal of Geochemical Exploration,104(3), 118–127. https://doi.org/10.1016/j.gexplo.2010.01.006.

    Article  CAS  Google Scholar 

  • Thiombane, M., Zuzolo, D., Cicchella, D., Albanese, S., Lima, A., Cavaliere, M., et al. (2018). Soil geochemical follow-up in the Cilento World Heritage Park (Campania, Italy) through exploratory compositional data analysis and C-A fractal model. Journal of Geochemical Exploration,189, 85–99. https://doi.org/10.1016/j.gexplo.2017.06.010.

    Article  CAS  Google Scholar 

  • Tume, P., Bech, J., Sepulveda, B., Tume, L., & Bech, J. (2008). Concentrations of heavy metals in urban soils of Talcahuano (Chile): A preliminary study. Environmental Monitoring and Assessment,140(1–3), 91–98.

    Article  CAS  Google Scholar 

  • Tume, P., González, E., King, R. W., Cuitiño, L., Roca, N., & Bech, J. (2018a). Distinguishing between natural and anthropogenic sources for potentially toxic elements in urban soils of Talcahuano, Chile. Journal of Soils and Sediments,18(6), 2335–2349. https://doi.org/10.1007/s11368-017-1750-0.

    Article  CAS  Google Scholar 

  • Tume, P., González, E., King, R. W., Monsalve, V., Roca, N., & Bech, J. (2018b). Spatial distribution of potentially harmful elements in urban soils, city of Talcahuano, Chile. Journal of Geochemical Exploration,184(Part B), 333–344. https://doi.org/10.1016/j.gexplo.2016.12.007.

    Article  CAS  Google Scholar 

  • Tume, P., González, E., Reyes, F., Fuentes, J. P., Roca, N., Bech, J., et al. (2019). Sources analysis and health risk assessment of trace elements in urban soils of Hualpen, Chile. CATENA,175, 304–316. https://doi.org/10.1016/j.catena.2018.12.030.

    Article  CAS  Google Scholar 

  • Tume, P., Roca, N., Rubio, R., King, R., & Bech, J. (2018c). An assessment of the potentially hazardous element contamination in urban soils of Arica, Chile. Journal of Geochemical Exploration,184(Part B), 345–357. https://doi.org/10.1016/j.gexplo.2016.09.011.

    Article  CAS  Google Scholar 

  • USEPA. (1989). Risk assessment guidance for superfund (Vol. I). Human Health Evaluation Manual (Part A). EPA/540/1-89/002.

  • USEPA. (1996). Soil screening guidance technical background document. Office of Solid Waste and Emergency Response. EPA/540/R-95/128.

  • USEPA. (1997). Exposure factors handbook. Washington: Environmental Protection Agency.

    Google Scholar 

  • USEPA. (2001). Risk assessment guidance for supefund. Process for conducting a probabilistic risk assessment (pp. 385).

  • Varol, M. (2011). Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. Journal of Hazardous Materials,195, 355–364. https://doi.org/10.1016/j.jhazmat.2011.08.051.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the Chilean Environment Ministry for supplying the data used in this study. The comments of two anonymous reviewers helped to improve the clarity of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro Tume.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 34 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tume, P., Barrueto, K., Olguin, M. et al. The influence of the industrial area on the pollution outside its borders: a case study from Quintero and Puchuncavi districts, Chile. Environ Geochem Health 42, 2557–2572 (2020). https://doi.org/10.1007/s10653-019-00423-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-019-00423-2

Keywords

Navigation