Skip to main content

Advertisement

Log in

Characteristics and source apportionment of water-soluble inorganic ions in atmospheric particles in Lvliang, China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Seasonal atmospheric particulate matter samples with different particle sizes (< 2.5 μm [PM2.5], 2.5–5 μm [PM2.5–5], 5–10 μm [PM5–10], and 10–100 μm [PM10–100]) were collected to analyze the mass concentration and distribution characteristics of nine water-soluble ions (WSIs; F, Cl, NO3, SO42−, Na+, NH4+, K+, Mg2+, and Ca2+) in Lvliang in China. The results of chemical composition analysis indicated that the average concentration of total WSIs was 29.08 µg·m−3 and accounted for 40.45% of PM2.5, 80.99% of which was attributable to SO42−, NH4+, and NO3; the concentration demonstrated obvious distribution characteristics. NO3 and NH4+ primarily exist as NH4NO3 and (NH4)2SO4, respectively, in fine particles but as NaNO3 and NH4Cl, respectively, in coarse particles. The PM2.5 was alkaline overall, and K+ and NH4+ caused the highest RC/A values in autumn. Stationary sources contribute more to WSIs in particulates than mobile sources. The secondary transformation degree of SO2 was higher than that of NOx, especially in fine particles. The positive matrix factorization (PMF) and potential source contribution function (PSCF) models were combined to determine the sources of WSIs in PM2.5. Through use of the PMF model, five source factors were categorized: secondary aerosols (43.0%), biomass combustion (21.7%), coal combustion (17.6%), dust (10.9%), and vehicular traffic (6.8%). The results of the PSCF model suggested that the transport of pollutants from Shanxi, northwestern Shaanxi, Gansu, Inner Mongolia and Henan, had the greatest effect on air quality in Lvliang.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article.

References

  • Anttila, T., Kiendler-Scharr, A., Tillmann, R., & Mentel, T. F. (2006). On the reactive uptake of gaseous compounds by organic-coated aqueous aerosols: Theoretical analysis and application to the heterogeneous hydrolysis of N2O5. Journal of Physical Chemistry A, 110, 10435–10443. https://doi.org/10.1021/jp062403c

    Article  CAS  Google Scholar 

  • Arimoto, R., Duce, R., Savoie, D., Prospero, J., Talbot, R., Cullen, J., Tomza, U., Lewis, N., & Ray, B. (1996). Relationships among aerosol constitutes from Asia and the North Pacific during PEM-West A. Journal of Geophysical Research, 101, 2011–2024. https://doi.org/10.1029/95JD01071

    Article  CAS  Google Scholar 

  • Balat, M. (2007). Influence of coal as an energy source on environmental pollution. Energy Sources, Part A433A: Recovery, Utilization, and Environmental Effects+A465, 29, 581–589. https://doi.org/10.1080/15567030701225260

    Article  CAS  Google Scholar 

  • Bigi, A., Bianchi, F., De Gennaro, G., Di Gilio, A., Fermo, P., Ghermandi, G., Prevot, A. S. H., Urbani, M., Valli, G., Vecchi, R., & Piazzalunga, A. (2017). Hourly composition of gas and particle phase pollutants at a central urban background site in Milan Italy. Atmospheric Research, 186, 83–94. https://doi.org/10.1016/j.atmosres.2016.10.025

    Article  CAS  Google Scholar 

  • Cao, N., Huang, X., Zhu, Y., & Liu, H. (2019). Pollution characteristics and source apportionment of fine particles during a heavy pollution in winter in Xi’an City China. Environmental Science, 39, 32–39. https://doi.org/10.3969/j.issn.1000-6923.2019.01.004

    Article  CAS  Google Scholar 

  • Cao, R., Yan, Y., Guo, L., Guo, W., He, Q., & Wang, X. (2016). Distribution Characteristics of Water-soluble Ions in Size-segregated Particulate Matters in Taiyuan. Environmental Sciences, 37, 2034–2040.

    Google Scholar 

  • Cheng, L.-X., Fan, M., Chen, L.-F., Jiang, T., & Su, L. (2017). Effects on the haze pollution from autumn crop residue burning over the Jing-Jin-Ji Region China. Environmental Science, 37, 2801–2812. https://doi.org/10.3969/j.issn.1000-6923.2017.08.001

    Article  CAS  Google Scholar 

  • Cheng, S., Yang, L., Zhou, X., Xue, L., Gao, X., Zhou, Y., & Wang, W. (2011). Size-fractionated water-soluble ions, situ pH and water content in aerosol on hazy days and the influences on visibility impairment in Jinan China. Atmospheric Environment, 45, 4631–4640. https://doi.org/10.1016/j.atmosenv.2011.05.057

    Article  CAS  Google Scholar 

  • China Meteorological Administration (CMA) (2019). China Meteorological Administration. Available online at http://en.weather.com.cn ( Accessed 5 November 2021).

  • China Meteorological Administration CMA (2020). Yearbook of Meteorological in China (2020), in: Administration, C.M. (Ed.). China Meteorological Press, Beijing, China, p. 155.

  • Dai, G. S., Ulgiati, S., Zhang, Y. S., Yu, B. H., Kang, M. Y., Jin, Y., Dong, X. B., & Zhang, X. S. (2014). The false promises of coal exploitation: How mining affects herdsmen well-being in the grassland ecosystems of inner Mongolia. Energy Policy, 67, 146–153. https://doi.org/10.1016/j.enpol.2013.12.033

    Article  Google Scholar 

  • Dai, W., Gao, J., Cao, G., & Ouyang, F. (2013). Chemical composition and source identification of PM2.5 in the suburb of Shenzhen China. Atmospheric Research, 122, 391–400. https://doi.org/10.1016/j.atmosres.2012.12.004

    Article  CAS  Google Scholar 

  • Fan, J., Shang, Y., Zhang, X., Wu, X., Zhang, M., Cao, J., Luo, B., Zhang, X., Wang, S., Li, S., Liu, H., & Wu, P. (2020). Joint pollution and source apportionment of PM2.5 among three different urban environments in Sichuan Basin China. Science Total Environment, 714, 136305. https://doi.org/10.1016/j.scitotenv.2019.136305

    Article  CAS  Google Scholar 

  • Feng, J., Yu, H., Su, X., Liu, S., Li, Y., Pan, Y., & Sun, J.-H. (2016). Chemical composition and source apportionment of PM2.5 during Chinese spring festival at Xinxiang, a heavily polluted city in North China: Fireworks and health risks. Atmospheric Research, 182, 176–188. https://doi.org/10.1016/j.atmosres.2016.07.028

    Article  CAS  Google Scholar 

  • Feng, T., Wang, F., Yang, F., Li, Z., Lu, P., & Guo, Z. (2021). Carbonaceous aerosols in urban Chongqing China: Seasonal variation source apportionment and long-range transport. Chemosphere. https://doi.org/10.1016/j.chemosphere.2021.131462

    Article  Google Scholar 

  • Fourtziou, L., Liakakou, E., Stavroulas, I., Theodosi, C., Zarmpas, P., Psiloglou, B., Sciare, J., Maggos, T., Bairachtari, K., Bougiatioti, A., Gerasopoulos, E., Sarda-Esteve, R., Bonnaire, N., & Mihalopoulos, N. (2017). Multi-tracer approach to characterize domestic wood burning in Athens (Greece) during wintertime. Atmospheric Environment, 148, 89–101. https://doi.org/10.1016/j.atmosenv.2016.10.011

    Article  CAS  Google Scholar 

  • Gregoris, E., Morabito, E., Barbaro, E., Feltracco, M., Toscano, G., Merico, E., Grasso, F. M., Cesari, D., Conte, M., Contini, D., & Gambaro, A. (2021). Chemical characterization and source apportionment of size-segregated aerosol in the port-city of Venice (Italy). Atmospheric Pollution Research, 12, 261–271. https://doi.org/10.1016/j.apr.2020.11.007

    Article  CAS  Google Scholar 

  • Guo, S., Hu, M., Wang, Z. B., Slanina, J., & Zhao, Y. L. (2010). Size-resolved aerosol water-soluble ionic compositions in the summer of Beijing: Implication of regional secondary formation. Atmospheric Chemistry and Physics, 10, 947–959. https://doi.org/10.5194/acp-10-947-2010

    Article  CAS  Google Scholar 

  • He, Q., Yan, Y., Guo, L., Zhang, Y., Zhang, G., & Wang, X. (2017). Characterization and source analysis of water-soluble inorganic ionic species in PM2.5 in Taiyuan city. China. Atmos. Res., 184, 48–55. https://doi.org/10.1016/j.atmosres.2016.10.008

    Article  CAS  Google Scholar 

  • Hien, P. D., Bac, V. T., & Thinh, N. T. H. (2004). PMF receptor modelling of fine and coarse PM10 in air masses governing monsoon conditions in Hanoi, northern Vietnam. Atmospheric Environment, 38, 189–201. https://doi.org/10.1016/j.atmosenv.2003.09.064

    Article  CAS  Google Scholar 

  • Huai, T., Durbin, T. D., Younglove, T., Scora, G., Barth, M., & Norbeck, J. M. (2005). Vehicle specific power approach to estimating on-road NH3 emissions from light-duty vehicles. Environmental Science and Technology, 39, 9595–9600. https://doi.org/10.1021/es050120c

    Article  CAS  Google Scholar 

  • Huang, X., Liu, Z., Zhang, J., Wen, T., Ji, D., & Wang, Y. (2016). Seasonal variation and secondary formation of size-segregated aerosol water-soluble inorganic ions during pollution episodes in Beijing. Atmospheric Research, 168, 70–79. https://doi.org/10.1016/j.atmosres.2015.08.021

    Article  CAS  Google Scholar 

  • Ianniello, A., Spataro, F., Esposito, G., Allegrini, I., Rantica, E., Ancora, M. P., Hu, M., & Zhu, T. (2010). Occurrence of gas phase ammonia in the area of Beijing (China). Atmospheric Chemistry and Physics, 10, 9487–9503. https://doi.org/10.5194/acp-10-9487-2010

    Article  CAS  Google Scholar 

  • Kelly, J. T., Avise, J., Cai, C., & Kaduwela, A. P. (2011). Simulating particle size distributions over California and impact on lung deposition fraction. Aerosol Science and Technology, 45, 148–162. https://doi.org/10.1080/02786826.2010.528078

    Article  CAS  Google Scholar 

  • Kumar, P., & Yadav, S. (2016). Seasonal Variations in water soluble inorganic ions, OC and EC in PM10 and PM > 10 aerosols over Delhi: Influence of sources and meteorological factors. Aerosol Air Quality Research, 16, 1165–1178. https://doi.org/10.4209/aaqr.2015.07.0472

    Article  CAS  Google Scholar 

  • Li, L., Tan, Q., Zhang, Y., Feng, M., Qu, Y., An, J., & Liu, X. (2017). Characteristics and source apportionment of PM2.5 during persistent extreme haze events in Chengdu, southwest China. Environmental Pollution, 230, 718–729. https://doi.org/10.1016/j.envpol.2017.07.029

    Article  CAS  Google Scholar 

  • Li, L., Yin, Y., Kong, S., Wen, B., Chen, K., Yuan, L., & Li, Q. (2014). Altitudinal effect to the size distribution of water-soluble inorganic ions in PM at Huangshan China. Atmospheric Environment, 98, 242–252. https://doi.org/10.1016/j.atmosenv.2014.08.077

    Article  CAS  Google Scholar 

  • Liu, Z., Xie, Y., Hu, B., Wen, T., Xin, J., Li, X., & Wang, Y. (2017). Size-resolved aerosol water-soluble ions during the summer and winter seasons in Beijing: Formation mechanisms of secondary inorganic aerosols. Chemosphere, 183, 119–131. https://doi.org/10.1016/j.chemosphere.2017.05.095

    Article  CAS  Google Scholar 

  • Meng, C. C., Wang, L. T., Zhang, F. F., Wei, Z., Ma, S. M., Ma, X., & Yang, J. (2016). Characteristics of concentrations and water-soluble inorganic ions in PM2.5 in Handan City, Hebei province China. Atmospheric Research, 171, 133–146. https://doi.org/10.1016/j.atmosres.2015.12.013

    Article  CAS  Google Scholar 

  • Meng, Z. Y., Jiang, X. M., Yan, P., Lin, W. L., Zhang, H. D., & Wang, Y. (2007). Characteristics and sources of PM2.5 and carbonaceous species during winter in Taiyuan China. Atmospheric Environment, 41, 6901–6908. https://doi.org/10.1016/j.atmosenv.2007.07.049

    Article  CAS  Google Scholar 

  • Mu, L., Li, X., Liu, X., Bai, H., Peng, L., Li, Y., Tian, M., & Zheng, L. (2021). Characterization and emission factors of carbonaceous aerosols originating from coke production in China. Environment Pollution. https://doi.org/10.1016/j.envpol.2020.115768

    Article  Google Scholar 

  • Mu, L., Zheng, L., Liang, M., Tian, M., Li, X., & Jing, D. (2019). Characterization and source analysis of water-soluble ions in atmospheric particles in Jinzhong China. Aerosol Air Quality Research, 19, 2396–2409. https://doi.org/10.4209/aaqr.2019.03.0109

    Article  CAS  Google Scholar 

  • Norris, G., Duvall, R., Brown, S., Bai, S. (2014). EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide, in: Agency, U.S.E.P. (Ed.). National Exposure Research Laboratory, Washington, DC, USA.

  • Osada, K., Kido, M., Nishita, C., Matsunaga, K., Iwasaka, Y., Nagatani, M., & Nakada, H. (2002). Changes in ionic constituents of free tropospheric aerosol particles obtained at Mt. Norikura (2770m a.s.l.), central Japan, during the Shurin period in 2000. Atmospheric Environment, 36, 5469–5477. https://doi.org/10.1016/S1352-2310(02)00663-5

    Article  CAS  Google Scholar 

  • Paatero, P., & Tapper, U. (1994). Positive matrix factorization: A non-negative factor model with optimal utilization of error estimates of data values. Environmetrics, 5, 111–126. https://doi.org/10.1002/env.3170050203

    Article  Google Scholar 

  • Park, S. S., Ondov, J. M., Harrison, D., & Nair, N. P. (2005). Seasonal and shorter-term variations in particulate atmospheric nitrate in Baltimore. Atmospheric Environment, 39, 2011–2020. https://doi.org/10.1016/j.atmosenv.2004.12.032

    Article  CAS  Google Scholar 

  • Polissar, A. V., Hopke, P. K., Paatero, P., Kaufmann, Y. J., Hall, D. K., Bodhaine, B. A., Dutton, E. G., & Harris, J. M. (1999). The aerosol at Barrow, Alaska: Long-term trends and source locations. Atmospheric Environment, 33, 2441–2458. https://doi.org/10.1016/S1352-2310(98)00423-3

    Article  CAS  Google Scholar 

  • Ren, B., Xie, P., Xu, J., Li, A., Tian, X., Hu, Z., Huang, Y., Li, X., Zhang, Q., Ren, H., & Ji, H. (2021). Use of the PSCF method to analyze the variations of potential sources and transports of NO2, SO2, and HCHO observed by MAX-DOAS in Nanjing, China during 2019. Science Total Environment. https://doi.org/10.1016/j.scitotenv.2021.146865

    Article  Google Scholar 

  • Ren, X., Harder, H., Martinez, M., Lesher, R. L., Oliger, A., Simpas, J. B., Brune, W. H., Schwab, J. J., Demerjian, K. L., He, Y., Zhou, X., & Gao, H. (2003). OH and HO2 Chemistry in the urban atmosphere of New York City. Atmospheric Environment, 37, 3639–3651. https://doi.org/10.1016/S1352-2310(03)00459-X

    Article  CAS  Google Scholar 

  • Rogozovsky, I., Ansmann, A., Althausen, D., Heese, B., Engelmann, R., Hofer, J., Baars, H., Schechner, Y., Lyapustin, A., & Chudnovsky, A. (2021). Impact of aerosol layering, complex aerosol mixing, and cloud coverage on high-resolution MAIAC aerosol optical depth measurements: Fusion of lidar, AERONET, satellite, and ground-based measurements. Atmospheric Environment, 247, 118163. https://doi.org/10.1016/j.atmosenv.2020.118163

    Article  CAS  Google Scholar 

  • Shen, Z., Cao, J., Arimoto, R., Han, Z., Zhang, R., Han, Y., Liu, S., Okuda, T., Nakao, S., & Tanaka, S. (2009). Ionic composition of TSP and PM2.5 during dust storms and air pollution episodes at Xi’an China. Atmospheric Environment, 43, 2911–2918. https://doi.org/10.1016/j.atmosenv.2009.03.005

    Article  CAS  Google Scholar 

  • Su, Y. W., Liu, W. J., Mao, Y., Cheng, C., Shi, M. M., Xu, A., & Xing, X. L. (2022). Characteristics and source analysis of water-soluble inorganic pollution in PM 2.5 during summer in central China. Environment Science, 43(2), 619–628.

    Google Scholar 

  • Sun, M. H., Wang, Y., Wang, T., Fan, S. J., Wang, W. X., Li, P. H., Guo, J., & Li, Y. H. (2010). Cloud and the corresponding precipitation chemistry in south China: Water-soluble components and pollution transport. Journal of Geophysical Research. https://doi.org/10.1029/2010JD014315

    Article  Google Scholar 

  • Sun, Y. L., Wang, Z. F., Du, W., Zhang, Q., Wang, Q. Q., Fu, P. Q., Pan, X. L., Li, J., Jayne, J., & Worsnop, D. R. (2015). Long-term real-time measurements of aerosol particle composition in Beijing, China: Seasonal variations, meteorological effects, and source analysis. Atmospheric Chemistry and Physics, 15, 10149–10165. https://doi.org/10.5194/acp-15-10149-2015

    Article  CAS  Google Scholar 

  • Sun, Y., Zhuang, G., Tang, A., Wang, Y., & An, Z. (2006). Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environmental Science and Technology, 40, 3148–3155. https://doi.org/10.1021/es051533g

    Article  CAS  Google Scholar 

  • Sun, Y., Zhuang, G., Wang, Y., Han, L., Guo, J., Dan, M., Zhang, W., Wang, Z., & Hao, Z. (2004). The air-borne particulate pollution in Beijing—concentration, composition, distribution and sources. Atmospheric Environment, 38, 5991–6004. https://doi.org/10.1016/j.atmosenv.2004.07.009

    Article  CAS  Google Scholar 

  • Tan, J., Zhang, L., Zhou, X., Duan, J., Li, Y., Hu, J., & He, K. (2017). Chemical characteristics and source apportionment of PM2.5 in Lanzhou China. Science Total Environment, 601–602, 1743–1752. https://doi.org/10.1016/j.scitotenv.2017.06.050

    Article  CAS  Google Scholar 

  • Tao, Y., Li, Q., Zhang, J., Li, S., & Li, X. (2017). Seasonal variations in particle size distribution and water-soluble ion composition of atmospheric particles in Chengdu. Environment Science, 38, 4034–4043.

    Google Scholar 

  • The state council of the people’s republic of China (PRC) (2018). China releases three-year action plan for cleaner air. Available online at https://english.www.gov.cn/policies (Accessed 20 December 2021).

  • Tian, Y., Harrison, R. M., Feng, Y., Shi, Z., Liang, Y., Li, Y., & Xu, J. (2021). Size−resolved source apportionment of particulate matter from a megacity in northern China based on one-year measurement of inorganic and organic components. Environmental Pollution, 289, 117932. https://doi.org/10.1016/j.envpol.2021.117932

    Article  CAS  Google Scholar 

  • Wang, B., Tang, Z., Cai, N., & Niu, H. (2021a). The characteristics and sources apportionment of water-soluble ions of PM2.5 in suburb Tangshan China. Urban Climate. https://doi.org/10.1016/j.uclim.2020.100742

    Article  Google Scholar 

  • Wang, Q., Ma, Y., Tan, J., Zheng, N., Duan, J., Sun, Y., He, K., & Zhang, Y. (2015). Characteristics of size-fractionated atmospheric metals and water-soluble metals in two typical episodes in Beijing. Atmospheric Environment, 119, 294–303. https://doi.org/10.1016/j.atmosenv.2015.08.061

    Article  CAS  Google Scholar 

  • Wang, Y., Guo, W., Yan, S.-M., Pei, K.-N., Li, M.-M., & Chen, E.-P. (2021b). Influence of pollutant transport from both sides of the Taihang mountains on cross-valley urban aerosols. Environmental Sciences, 42, 4104–4115.

    Google Scholar 

  • Wang, Y., Wang, M., Li, S., Sun, H., Mu, Z., Zhang, L., Li, Y., & Chen, Q. (2020). Study on the oxidation potential of the water-soluble components of ambient PM25 over Xi’an, China: Pollution levels, source apportionment and transport pathways. Environment International. https://doi.org/10.1016/j.envint.2020.105515

    Article  Google Scholar 

  • Wang, Y., Zhuang, G., Zhang, X., Huang, K., Xu, C., Tang, A., Chen, J., & An, Z. (2006). The ion chemistry, seasonal cycle, and sources of PM2.5 and TSP aerosol in Shanghai. Atmospheric Environment, 40, 2935–2952. https://doi.org/10.1016/j.atmosenv.2005.12.051

    Article  CAS  Google Scholar 

  • Wei, N., Xu, Z., Liu, J., Wang, G., Liu, W., Zhuoga, D., Xiao, D., & Yao, J. (2019). Characteristics of size distributions and sources of water-soluble ions in Lhasa during monsoon and non-monsoon seasons. Journal of Environmental Sciences, 82, 155–168. https://doi.org/10.1016/j.jes.2019.02.017

    Article  CAS  Google Scholar 

  • Xiao, H.-W., Xiao, H.-Y., Luo, L., Shen, C.-Y., Long, A.-M., Chen, L., Long, Z.-H., & Li, D.-N. (2017). Atmospheric aerosol compositions over the South China Sea: Temporal variability and source apportionment. Atmospheric Chemistry and Physics, 17, 3199–3214. https://doi.org/10.5194/acp-17-3199-2017

    Article  CAS  Google Scholar 

  • Yamasoe, M. A., Artaxo, P., Miguel, A. H., & Allen, A. G. (2000). Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: Water-soluble species and trace elements. Atmospheric Environment, 34, 1641–1653. https://doi.org/10.1016/S1352-2310(99)00329-5

    Article  CAS  Google Scholar 

  • Yao, Q., Liu, Z., Han, S., Cai, Z., Liu, J., Huang, X., Liu, J., & Wang, Y. (2017). Characteristics of the size distribution of water-soluble ions during a heavy pollution episode in the winter in Tianjin. Environment Science, 38, 4958–4967.

    Google Scholar 

  • Yu, C., Zhang, Y., & Chen, W. (2021). The transport pathways and potential source regions of PM2.5 in Yinchuan China. China Environment Science, 41, 3055–3065.

    Google Scholar 

  • Zang, L., Zhang, Y., Zhu, B., Mao, F., Zhang, Y., & Wang, Z. (2021). Characteristics of water-soluble inorganic aerosol pollution and its meteorological response in Wuhan, Central China. Atmospheric Pollution Research, 12, 362–369. https://doi.org/10.1016/j.apr.2021.01.003

    Article  CAS  Google Scholar 

  • Zhang, L., Kong, S., Zheng, H., Hu, Y., Zeng, X., Cheng, Y., Qi, S. (2021). Concentrations and sources of black carbon aerosols in rural areas of Southern North China Plain. Enviroment. Science (Beijing, China), https://doi.org/10.13227/j.hjkx.202108052

  • Zhang, R., Wei, T., Glomsrod, S., & Shi, Q. (2014). Bioenergy consumption in rural China: Evidence from a survey in three provinces. Energy Policy, 75, 136–145. https://doi.org/10.1016/j.enpol.2014.08.036

    Article  CAS  Google Scholar 

  • Zhang, T., Cao, J. J., Tie, X. X., Shen, Z. X., Liu, S. X., Ding, H., Han, Y. M., Wang, G. H., Ho, K. F., Qiang, J., & Li, W. T. (2011). Water-soluble ions in atmospheric aerosols measured in Xi’an, China: Seasonal variations and sources. Atmospheric Research, 102, 110–119. https://doi.org/10.1016/j.atmosres.2011.06.014

    Article  CAS  Google Scholar 

  • Zhao, Y., & Gao, Y. (2008). Mass size distributions of water-soluble inorganic and organic ions in size-segregated aerosols over metropolitan Newark in the US east coast. Atmospheric Environment, 42, 4063–4078. https://doi.org/10.1016/j.atmosenv.2008.01.032

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (42077280), Key Research and Development Plan of Shanxi (201903D311005), Shanxi Province Science Foundation (201901D111065). This manuscript was edited by Wallace Academic Editing.

Author information

Authors and Affiliations

Authors

Contributions

LM was involved in conceptualization, methodology, experimental apparatus and discussion and commented on the manuscript at all stages. TL contributed to data curation and writing—original draft preparation. XL was involved in experiments. YL contributed to visualization and investigation. ZL, XJ, and CF were involved in software, validation, and supervision. LZ contributed to writing—reviewing and editing.

Corresponding author

Correspondence to Ling Mu.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Mu, L., Li, X. et al. Characteristics and source apportionment of water-soluble inorganic ions in atmospheric particles in Lvliang, China. Environ Geochem Health 45, 4203–4217 (2023). https://doi.org/10.1007/s10653-023-01484-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-023-01484-0

Keywords

Navigation