Skip to main content
Log in

Genetic variation in the ADIPOQ gene, adiponectin concentrations and risk of colorectal cancer: a Mendelian Randomization analysis using data from three large cohort studies

  • CANCER
  • Published:
European Journal of Epidemiology Aims and scope Submit manuscript

Abstract

Higher levels of circulating adiponectin have been related to lower risk of colorectal cancer in several prospective cohort studies, but it remains unclear whether this association may be causal. We aimed to improve causal inference in a Mendelian Randomization meta-analysis using nested case–control studies of the European Prospective Investigation into Cancer and Nutrition (EPIC, 623 cases, 623 matched controls), the Health Professionals Follow-up Study (HPFS, 231 cases, 230 controls) and the Nurses’ Health Study (NHS, 399 cases, 774 controls) with available data on pre-diagnostic adiponectin concentrations and selected single nucleotide polymorphisms in the ADIPOQ gene. We created an ADIPOQ allele score that explained approximately 3% of the interindividual variation in adiponectin concentrations. The ADIPOQ allele score was not associated with risk of colorectal cancer in logistic regression analyses (pooled OR per score-unit unit 0.97, 95% CI 0.91, 1.04). Genetically determined twofold higher adiponectin was not significantly associated with risk of colorectal cancer using the ADIPOQ allele score as instrumental variable (pooled OR 0.73, 95% CI 0.40, 1.34). In a summary instrumental variable analysis (based on previously published data) with higher statistical power, no association between genetically determined twofold higher adiponectin and risk of colorectal cancer was observed (0.99, 95% CI 0.93, 1.06 in women and 0.94, 95% CI 0.88, 1.01 in men). Thus, our study does not support a causal effect of circulating adiponectin on colorectal cancer risk. Due to the limited genetic determination of adiponectin, larger Mendelian Randomization studies are necessary to clarify whether adiponectin is causally related to lower risk of colorectal cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. World Cancer Research Fund/American Institute for Cancer Research. Continuous update project report. Food, nutrition, physical activity, and the prevention of colorectal cancer. Washington, DC 2011.

  2. Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nat Rev Immunol. 2006;6(10):772–83. doi:10.1038/nri1937.

    Article  CAS  PubMed  Google Scholar 

  3. Chandran M, Phillips SA, Ciaraldi T, Henry RR. Adiponectin: more than just another fat cell hormone? Diabetes Care. 2003;26(8):2442–50.

    Article  CAS  PubMed  Google Scholar 

  4. Inamura K, Song M, Jung S, et al. Prediagnosis plasma adiponectin in relation to colorectal cancer risk according to KRAS mutation status. J Natl Cancer Inst. 2016;. doi:10.1093/jnci/djv363.

    PubMed  Google Scholar 

  5. Kim AY, Lee YS, Kim KH, et al. Adiponectin represses colon cancer cell proliferation via AdipoR1- and -R2-mediated AMPK activation. Mol Endocrinol. 2010;24(7):1441–52. doi:10.1210/me.2009-0498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Aleksandrova K, Boeing H, Jenab M, et al. Total and high-molecular weight adiponectin and risk of colorectal cancer: the European Prospective Investigation into Cancer and Nutrition Study. Carcinogenesis. 2012;33(6):1–8. doi:10.1093/carcin/bgs133.

    Article  CAS  Google Scholar 

  7. Song M, Zhang X, Wu K, et al. Plasma adiponectin and soluble leptin receptor and risk of colorectal cancer: a prospective study. Cancer Prev Res. 2013;6(9):875–85. doi:10.1158/1940-6207.CAPR-13-0169.

    Article  CAS  Google Scholar 

  8. Xu XT, Xu Q, Tong JL, et al. Meta-analysis: circulating adiponectin levels and risk of colorectal cancer and adenoma. J Dig Dis. 2011;12(4):234–44. doi:10.1111/j.1751-2980.2011.00504.x.

    Article  CAS  PubMed  Google Scholar 

  9. Davey Smith G, Ebrahim S. ‘Mendelian randomization’: can genetic epidemiology contribute to understanding environmental determinants of disease? Int J Epidemiol. 2003;32(1):1–22.

    Article  Google Scholar 

  10. Ebrahim S, Davey Smith G. Mendelian randomization: can genetic epidemiology help redress the failures of observational epidemiology? Hum Genet. 2008;123(1):15–33. doi:10.1007/s00439-007-0448-6.

    Article  PubMed  Google Scholar 

  11. Song M, Gong J, Giovannucci EL, et al. Genetic variants of adiponectin and risk of colorectal cancer. Int J Cancer. 2014;. doi:10.1002/ijc.29360.

    Google Scholar 

  12. Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: subsample and 2-sample instrumental variable estimators. Am J Epidemiol. 2013;178(7):1177–84. doi:10.1093/aje/kwt084.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Burgess S, Butterworth A, Thompson SG. Mendelian randomization analysis with multiple genetic variants using summarized data. Genet Epidemiol. 2013;37(7):658–65. doi:10.1002/gepi.21758.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Riboli E, Hunt KJ, Slimani N, et al. European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr. 2002;5(6B):1113–24.

    Article  CAS  PubMed  Google Scholar 

  15. Colditz GA, Manson JE, Hankinson SE. The Nurses’ Health Study: 20-year contribution to the understanding of health among women. J Women’s Health. 1997;6(1):49–62.

    Article  CAS  Google Scholar 

  16. Rimm EB, Giovannucci EL, Willett WC, et al. Prospective study of alcohol consumption and risk of coronary disease in men. Lancet. 1991;338(8765):464–8.

    Article  CAS  PubMed  Google Scholar 

  17. Wei EK, Giovannucci E, Fuchs CS, Willett WC, Mantzoros CS. Low plasma adiponectin levels and risk of colorectal cancer in men: a prospective study. J Natl Cancer Inst. 2005;97(22):1688–94. doi:10.1093/jnci/dji376.

    Article  CAS  PubMed  Google Scholar 

  18. Hankinson SE, Willett WC, Manson JE, et al. Alcohol, height, and adiposity in relation to estrogen and prolactin levels in postmenopausal women. J Natl Cancer Inst. 1995;87(17):1297–302.

    Article  CAS  PubMed  Google Scholar 

  19. Pischon T, Hotamisligil GS, Rimm EB. Adiponectin: stability in plasma over 36 hours and within-person variation over 1 year. Clin Chem. 2003;49(4):650–2.

    Article  CAS  PubMed  Google Scholar 

  20. Dastani Z, Hivert MF, Timpson N, et al. Novel loci for adiponectin levels and their influence on type 2 diabetes and metabolic traits: a multi-ethnic meta-analysis of 45,891 individuals. PLoS Genet. 2012;8(3):29.

    Article  Google Scholar 

  21. Heid IM, Henneman P, Hicks A, et al. Clear detection of ADIPOQ locus as the major gene for plasma adiponectin: results of genome-wide association analyses including 4659 European individuals. Atherosclerosis. 2010;208(2):412–20.

    Article  CAS  PubMed  Google Scholar 

  22. Ling H, Waterworth DM, Stirnadel HA, et al. Genome-wide linkage and association analyses to identify genes influencing adiponectin levels: the GEMS Study. Obesity (Silver Spring, MD). 2009;17(4):737–44. doi:10.1038/oby.2008.625.

    Article  CAS  Google Scholar 

  23. Richards JB, Waterworth D, O’Rahilly S, et al. A genome-wide association study reveals variants in ARL15 that influence adiponectin levels. PLoS Genet. 2009;5(12):11.

    Article  Google Scholar 

  24. He B, Pan Y, Zhang Y, et al. Effects of genetic variations in the adiponectin pathway genes on the risk of colorectal cancer in the Chinese population. BMC Med Genet. 2011;12:94. doi:10.1186/1471-2350-12-94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kaklamani VG, Wisinski KB, Sadim M, et al. Variants of the adiponectin (ADIPOQ) and adiponectin receptor 1 (ADIPOR1) genes and colorectal cancer risk. JAMA. 2008;300(13):1523–31. doi:10.1001/jama.300.13.1523.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu L, Zhong R, Wei S, et al. Interactions between genetic variants in the adiponectin, adiponectin receptor 1 and environmental factors on the risk of colorectal cancer. PLoS ONE. 2011;6(11):e27301. doi:10.1371/journal.pone.0027301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Davey Smith G, Hemani G. Mendelian randomization: genetic anchors for causal inference in epidemiological studies. Hum Mol Genet. 2014;23(R1):R89–98. doi:10.1093/hmg/ddu328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haycock PC, Burgess S, Wade KH, Bowden J, Relton C, Davey Smith G. Best (but oft-forgotten) practices: the design, analysis, and interpretation of Mendelian randomization studies. Am J Clin Nutr. 2016;. doi:10.3945/ajcn.115.118216.

    PubMed  PubMed Central  Google Scholar 

  29. White H. A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity. Econometrica. 1980;48(4):817–38.

    Article  Google Scholar 

  30. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials. 1986;7(3):177–88.

    Article  CAS  PubMed  Google Scholar 

  31. Burgess S, Small DS, Thompson SG. A review of instrumental variable estimators for Mendelian randomization. Stat Methods Med Res. 2015;. doi:10.1177/0962280215597579.

    PubMed  Google Scholar 

  32. Yang X, Li J, Cai W, et al. Adiponectin gene polymorphisms are associated with increased risk of colorectal cancer. Med Sci Monit. 2015;21:2595–606. doi:10.12659/MSM.893472.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pei Y, Xu Y, Niu W. Causal relevance of circulating adiponectin with cancer: a meta-analysis implementing Mendelian randomization. Tumour Biol. 2015;36(2):585–94. doi:10.1007/s13277-014-2654-x.

    Article  CAS  PubMed  Google Scholar 

  34. Evans DM, Davey Smith G. Mendelian randomization: new applications in the coming age of hypothesis-free causality. Annu Rev Genom Hum Genet. 2015;16:327–50. doi:10.1146/annurev-genom-090314-050016.

    Article  CAS  Google Scholar 

  35. VanderWeele TJ, Tchetgen Tchetgen EJ, Cornelis M, Kraft P. Methodological challenges in mendelian randomization. Epidemiology (Cambridge, MA). 2014;25(3):427–35. doi:10.1097/EDE.0000000000000081.

    Article  Google Scholar 

  36. Dai JY, Zhang XC. Mendelian randomization studies for a continuous exposure under case-control sampling. Am J Epidemiol. 2015;181(6):440–9. doi:10.1093/aje/kwu291.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The coordination of EPIC is financially supported by the European Commission (DG-SANCO) and the International Agency for Research on Cancer. The national cohorts are supported by Danish Cancer Society (Denmark); Ligue Contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de l’Education Nationale, Institut National de la Santé et de la Recherche Médicale (INSERM) (France); Deutsche Krebshilfe, Deutsches Krebsforschungszentrum and Federal Ministry of Education and Research (Germany); the Hellenic Health Foundation (Greece); Associazione Italiana per la Ricerca sul Cancro-AIRC-Italy and National Research Council (Italy); Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands); ERC-2009-AdG 232997 and Nordforsk, Nordic Centre of Excellence Programme on Food, Nutrition and Health (Norway); Health Research Fund (FIS), PI13/00061 to Granada; PI13/01162 to EPIC-Murcia), Regional Governments of Andalucía, Asturias, Basque Country, Murcia (No. 6236), and Navarra, ISCIII RETIC (RD06/0020) (Spain); Swedish Cancer Society, Swedish Research Council and County Councils of Skåne and Västerbotten (Sweden); Cancer Research UK (14136 to EPIC-Norfolk; C570/A16491 and C8221/A19170 to EPIC-Oxford), Medical Research Council (1000143 to EPIC-Norfolk, MR/M012190/1 to EPIC-Oxford) (United Kingdom). Measurement of biomarkers in EPIC was partly supported by World Cancer Research Fund International and Wereld Kanker Onderzoek Fonds (WCRF NL). The research based on the Nurses’ Health Study and the Health Professional Follow-up Study are financially supported by U.S. NIH grants [P01 CA87969, UM1 CA186107, R01 CA49449 (to NHS), P01 CA55075, UM1 CA167552 (to HPFS), P50 CA127003 (to C.S. Fuchs), R01 CA151993, R35 CA197735 (to S. Ogino), K24 DK098311 and R01 CA137178 (to A.T. Chan)]. A.T. Chan is a Damon Runyon Clinical Investigator. We would like to thank the participants and staff of the Nurses’ Health Study and Health Professionals Follow-up Study for their valuable contributions as well as the following state cancer registries for their help: AL, AZ, AR, CA, CO, CT, DE, FL, GA, ID, IL, IN, IA, KY, LA, ME, MD, MA, MI, NE, NH, NJ, NY, NC, ND, OH, OK, OR, PA, RI, SC, TN, TX, VA, WA, WY. The authors assume full responsibility for analyses and interpretation of these data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katharina Nimptsch.

Ethics declarations

Conflict of interest

Andrew T. Chan declared consultancies for Bayer Healthcare and Pfizer Inc. Ruth Travis declared salary and support for EPIC-Oxford from Cancer Research UK (paid by the University of Oxford), support for prostate cancer research project on metabolomics from the World Cancer Research Fund as well as support for EPIC-Oxford from the UK Medical Research Council. All other authors declared no potential conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nimptsch, K., Song, M., Aleksandrova, K. et al. Genetic variation in the ADIPOQ gene, adiponectin concentrations and risk of colorectal cancer: a Mendelian Randomization analysis using data from three large cohort studies. Eur J Epidemiol 32, 419–430 (2017). https://doi.org/10.1007/s10654-017-0262-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10654-017-0262-y

Keywords

Navigation