Skip to main content
Log in

Transformation of fungal isolates with avirulence genes provides tools for identification of corresponding resistance genes in the host plant

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

The identification and characterisation of resistance genes in breeding lines and commercial cultivars is often required for the development of disease control strategies such as rotation, stacking or spatial deployment of resistance genes. Sets of differential fungal isolates can be used to identify resistance genes present in breeding lines and cultivars, however, interpretation of results can be hindered by the presence of novel (previously uncharacterised) resistance genes or the stacking of multiple resistance genes. In this study, we generate a set of Leptosphaeria maculans differential addition isolates by transforming isolates with single avirulence genes (AvrLm1 or AvrLm4-7). These transformants have been screened against cultivars with unidentified resistance genes to confirm the presence of the corresponding resistance genes. This is a novel approach of identifying resistance genes on the basis of the response of host plants to inoculation with fungal isolates transformed with the corresponding avirulence genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

References

  • Balesdent, M. H., Barbetti, M. J., Li, H., Sivasithamparam, K., Gout, L., & Rouxel, T. (2005). Analysis of Leptosphaeria maculans race structure in a worldwide collection of isolates. Phytopathology, 95, 1061–1071.

    Article  PubMed  CAS  Google Scholar 

  • Bus, V. G. M., Rikkerink, E. H. A., Caffier, V., Durel, C. E., & Plummer, K. M. (2011). Revision of the nomenclature of the differential host-pathogen interactions of Venturia inaequalis and Malus. Annual Review of Phytopathology, 49, 391–413.

    Article  PubMed  CAS  Google Scholar 

  • Crouch, J. H., Lewis, B. G., & Mithen, R. F. (1994). The effect of A genome substitution on the resistance of Brassica napus to infection by Leptosphaeria maculans. Plant Breeding, 112, 265–278.

    Article  CAS  Google Scholar 

  • Daverdin, G., Rouxel, T., Gout, L., Aubertot, J. N., Fudal, I., Meyer, M., et al. (2012). Genome structure and reproductive behaviour influence the evolutionary potential of a fungal phytopathogen. PLoS Pathogens, 8, e1003020.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Delourme, R., Chevre, A. M., Brun, H., Rouxel, T., Balesdent, M. H., Dias, J. S., et al. (2006). Major gene and polygenic resistance to Leptosphaeria maculans in oilseed rape (Brassica napus). European Journal of Plant Pathology, 114, 41–52.

    Article  Google Scholar 

  • Dodds, P. N., Lawrence, G. J., Catanzariti, A. M., Teh, T., Wang, C. I., Ayliffe, M. A., et al. (2006). Direct protein interaction underlies gene-for-gene specificity and coevolution of the flax resistance genes and flax rust avirulence genes. Proceedings of the National Academy of Sciences, 103, 8888–8893.

    Article  CAS  Google Scholar 

  • Elliott, C. E., & Howlett, B. J. (2006). Overexpression of a 3-ketoacyl-CoA thiolase in Leptosphaeria maculans causes reduced pathogenicity on Brassica napus. Molecular Plant—Microbe Interactions, 19, 588–596.

    Article  PubMed  CAS  Google Scholar 

  • Flor, H. H. (1955). Host-parasite interactions in flax rust—its genetic and other implications. Phytopathology, 45, 680–685.

    Google Scholar 

  • Fudal, I., Ross, S., Gout, L., Blaise, F., Kuhn, M. L., Eckert, M. R., et al. (2007). Heterochromatin-like regions as ecological niches for avirulence genes in the Leptosphaeria maculans genome: map-based cloning of AvrLm6. Molecular Plant-Microbe Interactions, 20, 459–470.

    Article  PubMed  CAS  Google Scholar 

  • Gardiner, D. M., & Howlett, B. J. (2004). Negative selection using thymidine kinase increases the efficiency of recovery of transformants with targeted genes in the filamentous fungus Leptosphaeria maculans. Current Genetics, 45, 249–255.

    Article  PubMed  CAS  Google Scholar 

  • Gout, L., Fudal, I., Kuhn, M. L., Blaise, F., Eckert, M., Cattolico, L., et al. (2006). Lost in the middle of nowhere: the AvrLm1 avirulence gene of the Dothideomycete Leptosphaeria maculans. Molecular Microbiology, 60, 67–80.

    Article  PubMed  CAS  Google Scholar 

  • Gout, L., Kuhn, M. L., Vincenot, L., Bernard-Samain, S., Cattolico, L., Barbetti, M., et al. (2007). Genome structure impacts molecular evolution at the AvrLm1 avirulence locus of the plant pathogen Leptosphaeria maculans. Environmental Microbiology, 9, 2978–2992.

    Article  PubMed  CAS  Google Scholar 

  • Grant, M. R., Godiard, L., Straube, E., Ashfield, T., Lewald, J., Sattler, A., et al. (1995). Structure of the Arabidopsis RPM1 gene enabling dual specificity disease resistance. Science, 269, 843–846.

    Article  PubMed  CAS  Google Scholar 

  • Herrera-Foessel, S. A., Singh, R. P., Huerta-Espino, J., Yuen, J., & Djurle, A. (2005). New genes for leaf rust resistance in CIMMYT durum wheats. Plant Disease, 89, 809–814.

    Article  CAS  Google Scholar 

  • Larkan, N. J., Lydiate, D. J., Parkin, I. A., Nelson, M. N., Epp, D. J., Cowling, W. A., et al. (2013). The Brassica napus blackleg resistance gene LepR3 encodes a receptor-like protein triggered by the Leptosphaeria maculans effector AVRLM1. New Phytologist, 197, 595–605.

    Article  PubMed  CAS  Google Scholar 

  • Long, Y., Wang, Z., Sun, Z., Fernando, D. W. G., McVetty, P. B. E., & Li, G. (2011). Identification of two blackleg resistance genes and fine mapping of one of these two genes in a Brassica napus cultivar ‘Surpass400’. Theoretical and Applied Genetics, 122, 1223–1231.

    Article  PubMed  Google Scholar 

  • Marcroft, S. J., Elliott, V. L., Cozijnsen, A. J., Salisbury, P. A., Howlett, B. J., & Van de Wouw, A. P. (2012). Identifying resistance genes to Leptosphaeria maculans in Australian Brassica napus cultivars based on reactions to isolates with known avirulence genotypes. Crop and Pasture Science, 63, 338–350.

    Article  CAS  Google Scholar 

  • McDonald, B. A., & Linde, C. (2002). Pathogen population genetics, evolutionary potential, and durable resistance. Annual Review of Phytopathology, 40, 349–379.

    Article  PubMed  CAS  Google Scholar 

  • Parlange, F., Daverdin, G., Fudal, I., Kuhn, M. L., Balesdent, M. H., Blaise, F., et al. (2009). Leptosphaeria maculans avirulence gene AvrLm4-7 confers a dual recognition specificity by the Rlm4 and Rlm7 resistance genes of oilseed rape, and circumvents Rlm4-mediated recognition through a single amino acid change. Molecular Microbiology, 71, 851–863.

    Article  PubMed  CAS  Google Scholar 

  • Rimmer, S. R. (2006). Resistance genes to Leptosphaeria maculans in Brassica napus. Canadian Journal of Plant Pathology, 28, S288–S297.

    Article  CAS  Google Scholar 

  • Rouxel, T., & Balesdent, M. H. (2005). The stem canker (blackleg) fungus, Leptosphaeria maculans, enters the genomic era. Molecular Plant Pathology, 6, 225–241.

    Article  PubMed  CAS  Google Scholar 

  • Rouxel, T., Willner, E., Coudard, L., & Balesdent, M. H. (2003). Screening and identification of resistance to Leptosphaeria maculans (stem canker) in Brassica napus accessions. Euphytica, 133, 219–231.

    Article  CAS  Google Scholar 

  • Stukenbrock, E. H., & McDonald, B. A. (2009). Population genetics of fungal and oomycete effectors involved in gene-for-gene interactions. Molecular Plant Microbe Interactions, 22, 371–380.

    Article  PubMed  CAS  Google Scholar 

  • Van de Wouw, A. P., & Howlett, B. J. (2012). Estimating frequencies of virulent isolates in field populations of a plant pathogenic fungus, Leptosphaeria maculans, using high-throughput pyrosequencing. Journal of Applied Microbiology, 113, 1145–1153.

    Article  PubMed  Google Scholar 

  • Van de Wouw, A. P., Marcroft, S. J., Barbetti, M. J., Hua, L., Salisbury, P. A., Gout, L., et al. (2009). Dual control of avirulence in Leptosphaeria maculans towards a Brassica napus cultivar with ‘sylvestris-derived’ resistance suggests involvement of two resistance genes. Plant Pathology, 58, 305–313.

    Article  Google Scholar 

  • Van de Wouw, A. P., Cozijnsen, A. J., Hane, J. K., Brunner, P. C., McDonald, B. A., Oliver, R. P., et al. (2010). Evolution of linked avirulence effectors in Leptosphaeria maculans is affected by genomic environment and exposure to resistance genes in host plants. PLoS Pathogens, 6, e1001180.

    Article  PubMed  PubMed Central  Google Scholar 

  • Van de Wouw, A. P., Lowe, R. G. T., Elliott, C. E., Dubois, D. J., & Howlett, B. J. (2014a). An avirulence gene, AvrLmJ1, from the blackleg fungus, Leptosphaeria maculans, confers avirulence to Brassica juncea cultivars. Molecular Plant Pathology, 15, 523–530.

    Article  PubMed  Google Scholar 

  • Van de Wouw, A. P., Marcroft, S. J., Ware, A., Lindbeck, K., Khangura, R., & Howlett, B. J. (2014b). Breakdown of resistance to the fungal disease, blackleg, is averted in commercial canola (Brassica napus) crops in Australia. Field Crops Research, Accepted.

  • van Poppel, P. M. J. A., Huigen, D. J., & Grovers, F. (2009). Differential recognition of Phytophthora infestans races in potato R4 breeding lines. Phytopathology, 99, 1150–1155.

    Article  PubMed  Google Scholar 

  • Yu, F., Lydiate, D. J., & Rimmer, S. R. (2005). Identification of two novel genes for blackleg resistance in Brassica napus. Theoretical and Applied Genetics, 110, 969–979.

    Article  PubMed  CAS  Google Scholar 

  • Yu, F., Lydiate, D. J., & Rimmer, S. R. (2008). Identification and mapping of a third blackleg resistance locus in Brassica napus derived from B. rapa subsp. sylvestris. Genome, 51, 64–72.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Grains Research and Development Corporation for funding and Australian canola breeders for providing seed of advanced breeding lines and cultivars.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angela P. Van de Wouw.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Van de Wouw, A.P., Elliott, C.E. & Howlett, B.J. Transformation of fungal isolates with avirulence genes provides tools for identification of corresponding resistance genes in the host plant. Eur J Plant Pathol 140, 875–882 (2014). https://doi.org/10.1007/s10658-014-0505-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-014-0505-7

Keywords

Navigation