Skip to main content
Log in

Differential expression of PR genes in response to Phytophthora capsici inoculation in resistant and susceptible black pepper (Piper nigrum L.) lines

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

Differential expression of three important genes encoding pathogenesis related proteins (PR proteins) viz. β-1,3-glucanase (PR-2), osmotin (PR-5) and cytosolic ascorbate peroxidase (cAPX, PR-9) were carried out in Phytophthora susceptible (Sreekara) and resistant (04-P24) black pepper lines compared to uninoculated plants using quantitative reverse transcription PCR (qRT-PCR). Upon Phytophthora capsici inoculation, expression of these three genes were either up-regulated or down-regulated. In the susceptible line, all three genes were expressed maximally on 1 day after inoculation (DAI) and thereafter the expression declined. In the resistant line, a steady increase in the expression pattern of genes was noticed during the course of infection. Highest expression levels of cAPX were noticed on 3 DAI and that of β-1, 3-glucanase and osmotin genes were maximum on 5 DAI. Soil inoculation of P. capsici affected the transcriptional activity of these genes in stem tissue also, indicating systemic defense response against the pathogen.

Differential expression profiles of PR genes in black pepper in response to P. capsici inoculation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abad, L. R., D’Urzo, M. P., Liu, D., Narasimhan, M. L., Reuveni, M., Zhu, J. K., Niu, X., Singh, N. K., Hasegawa, P. M., & Bressan, R. A. (1996). Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization. Plant Science, 118, 11–23.

    Article  CAS  Google Scholar 

  • Al-Morad, N. Y. M. (2013). The role of cellulase and pectinase in apricot canker caused by Hendersonula toruloidea and Phiaoacremonium aleophillium. Journal of Agricultural Science and Technology, 3(2A), 146–150.

    CAS  Google Scholar 

  • Anandaraj, M., & Peter, K. V. (1996). Biological control in spices (p. 52). Kozhikode: Indian Institute of Spices Research.

    Google Scholar 

  • Anandaraj, M., & Sarma, Y. R. (1994). Biological control of black pepper diseases. Indian Cocoa, Arecanut and Spices Journal, 18(1), 22–23.

    Google Scholar 

  • Anju, N., Salini, B., & Chinnamma, M. (2013). Functional variation of ascorbate peroxidase in black pepper (Piper nigrum) varieties during infection of Phytophthora capsici. Biosciences Biotechnology Research Asia, 10(1), 253–260.

    Article  Google Scholar 

  • Aravind, R. (2009). Studies on endophytic colonization of bacteria in black pepper (Piper nigrum L.) roots against Phytophthora capsici and Radopholous similis. Ph. D. Thesis, Mangalore university. Karnataka.

  • Baxter, H. L., & Stewart Jr., C. N. (2013). Effects of altered lignin biosynthesis on phenylpropanoid metabolism and plant stress. Biofuels, 4(6), 635–650.

    Article  CAS  Google Scholar 

  • Bhai, R. S., Eapen, S. J., Anandaraj, M., & Saji, K. V. (2010). Identification of Phytophthora and nematode-resistant source from open pollinated progenies of black pepper (Piper nigrum) using a modified protocol. Indian Journal of Agricultural Sciences, 80, 893–897.

    Google Scholar 

  • Chassot, C., Nawrath, C., & Metraux, J. P. (2007). Cuticular defects lead to full immunity to a major plant pathogen. The Plant Journal, 49, 972–980.

    Article  CAS  PubMed  Google Scholar 

  • Coffey, M. D., & Wilson, U. E. (1983). An ultrastructural study of the late-blight fungus Phytophthora infestans and its interaction with the foliage of two potato cultivars possessing different levels of general (field) resistance. Canadian Journal of Botany, 61(10), 2669–2685.

    Article  Google Scholar 

  • Dorrance, A. E., & Schmitthenner, A. F. (2000). New sources of resistance to Phytophthora sojae in the soybean plant introductions. Plant Disease, 84(12), 1303–1308.

    Article  CAS  Google Scholar 

  • Ebadzad, G., & Cravador, A. (2014). Quantitative RT-PCR analysis of differentially expressed genes in Quercus suber in response to Phytophthora cinnamomi infection. SpringerPlus, 3, 613–625.

    Article  PubMed  PubMed Central  Google Scholar 

  • El-Komy, M. H., Abou-Taleb, E. M., Aboshosha, S. M., & El-Sherif, E. M. (2010). Differential expression of potato pathogenesis-related proteins upon infection with late blight pathogen: a case study expression of potato osmotin-like protein. International Journal of Agriculture and Biology, 12, 179–186.

    CAS  Google Scholar 

  • Greenberg, J. T. (1997). Programmed cell death in plant-pathogen interactions. Annual Review of Plant Biology, 48(1), 525–545.

    Article  CAS  Google Scholar 

  • Griffin, M. J. (1977). Cocoa Phytophthora workshop, Rothamsted Experimental Station, England, 24–26 May 1976. PANS, 23(1), 107–110.

    Google Scholar 

  • Hammond-Kosack, K. E., & Parker, J. E. (2003). Deciphering plant–pathogen communication: Fresh perspectives for molecular resistance breeding. Current Opinion in Biotechnology, 14(2), 177–193.

    Article  CAS  PubMed  Google Scholar 

  • Huynh, Q. K., Borgmeyer, J. R., & Zobel, J. F. (1992). Isolation and characterization of a 22 kDa protein with antifungal properties from maize seeds. Biochemical and Biophysical Research Communications, 182(1), 1–5.

    Article  CAS  PubMed  Google Scholar 

  • Hu-zhe, Z., Chun-lan, C. U. I., Yu-ting, Z., Dan, W. A. N. G., Yu, J. I. N. G., & Yong, K. K. (2005). Active changes of lignification-related enzymes in pepper response to Glomus intraradices and/or Phytophthora capsici. Journal of Zhejiang University Science B, 6(8), 778–786.

    Google Scholar 

  • Johnson George, K., Vijesh Kumar, I. P., & Anandaraj, M. (2012). Transcriptomics approaches for gene discovery in plants - a case study in Piper. Agrotechnoogy, 1(2), 49.

    Google Scholar 

  • Jung, H. W., & Hwang, B. K. (2000). Isolation, partial sequencing and expression of pathogenesis-related cDNA genes from pepper leaves infected by Xanthomonas campestris spv. Vericatoria. Molecular Plant Microbe Interactions, 13, 136–142.

    Article  CAS  PubMed  Google Scholar 

  • Jung, H. W., Kim, K. D., & Hwang, B. K. (2005). Identification of pathogen-responsive regions in the promoter of a pepper lipid transfer protein gene (CALTPI) and the enhanced resistance of the CALTPI transgenic Arabidopsis against pathogen and environmental stresses. Planta, 221, 361–373.

    Article  CAS  PubMed  Google Scholar 

  • Kosslak, R. M., Dieter, J. R., Ruff, R. L., Chamberlin, M. A., Bowen, B. A., & Palmer, R. G. (1996). Partial resistance to root-borne infection by Phytophthora sojae in three allelic necrotic root mutants in soybean. Journal of Heredity, 87(6), 415–422.

    Article  Google Scholar 

  • Krzymowska, M., Konopka-Postupolska, D., Sobczak, M., Macioszek, V., Ellis, B. E., & Hennig, J. (2007). Infection of tobacco with different Pseudomonas syringae pathovars leads to distinct morphotypes of programmed cell death. The Plant Journal, 50(2), 253–264.

    Article  CAS  PubMed  Google Scholar 

  • Kushalappa, A. C., Yogendra, K. N., & Karre, S. (2016). Plant innate immune response: qualitative and quantitative resistance. Critical Reviews in Plant Sciences, 35(1), 38–55.

    Article  CAS  Google Scholar 

  • Li, W. L., Faris, J. D., Muthukrishnan, S., Liu, D. J., Chen, P. D., & Gill, B. S. (2001). Isolation and characterization of novel cDNA clones of acidic chitinases and β-1, 3-glucanases from wheat spikes infected by Fusarium graminearum. Theoretical and Applied Genetics, 102(2-3), 353–362.

  • Liu, D., Raghothama, K. G., Hasegawa, P. M., & Bressan, R. A. (1994). Osmotin over expression in potato delays development of disease symptoms. Proceedings of the National Academy of Sciences USA, 91, 1888–1892.

    Article  CAS  Google Scholar 

  • Liu, D., He, X., Li, W., Chen, C., & Ge, F. (2013). A β-1,3-glucanase gene expressed in fruit of Pyrus pyrifolia enhances resistance to several pathogenic fungi in transgenic tobacco. European Journal of Plant Patholology, 135, 265–277.

    Article  CAS  Google Scholar 

  • Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods, 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Louis, B., & Roy, P. (2010). Engineered pathogenesis related and antimicrobial proteins weaponry against Phytopthora infestans in potato plant: A review. Biotechnology and Molecular Biology Reviews, 5(4), 61–66.

    CAS  Google Scholar 

  • Louis, B., Waikhom, S. D., Jose, R. C., Goyari, S., Bhardwaj, P. K., Talukdar, N. C., & Roy, P. (2016). Cochliobolus lunatus down-regulates proteome at late stage of colonization and transiently alters StNPR1 expression in Solanum tuberosum L. Archives of Microbiology, 1–10.

  • Luna, E., Bruce, T. J., Roberts, M. R., Flors, V., & Ton, J. (2012). Next-generation systemic acquired resistance. Plant Physiology, 158(2), 844–853.

    Article  CAS  PubMed  Google Scholar 

  • Malehorn, D. E., Borgmeyer, J. R., Smith, C. E., & Shah, D. M. (1994). Characterization and expression of an antifungal zeamatin-like protein (Zlp) gene from Zea mays. Plant Physiology, 106(4), 1471–1481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mani, T., Sivakumar, K. C., & Manjula, S. (2012). Expression and functional analysis of two osmotin (PR - 5) isoforms with differential antifungal activity from Piper colubrinum: Prediction of structure–function relationship by bioinformatics approach. Molecular Biotechnoogy, 52, 251–261.

    Article  CAS  Google Scholar 

  • Misra, R. S., Sharma, K., Mishra, A. K., & Sriram, S. (2008). Biochemical alterations induced in Taro in response to Phytophthora colocasiae infection. Advances in Natural and Applied Sciences, 2(3), 112–121.

    CAS  Google Scholar 

  • Mohammadi, M., & Kazemi, H. (2002). Changes in peroxidase and polyphenol oxidase activities in susceptible and resistant wheat heads inoculated with Fusarium graminearum and induced resistance. Plant Science, 162(4), 491–498.

    Article  CAS  Google Scholar 

  • Mur, L. A., Kenton, P., Lloyd, A. J., Ougham, H., & Prats, E. (2008). The hypersensitive response; the centenary is upon us but how much do we know? Journal of Experimental Botany, 59(3), 501–520.

    Article  CAS  PubMed  Google Scholar 

  • Naton, B., Hahlbrock, K., & Schmelzer, E. (1996). Correlation of rapid cell death with metabolic changes in fungus-infected, cultured parsley cells. Plant Physiology, 112(1), 433–444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Passardi, F., Penel, C., & Dunand, C. (2004). Performing the paradoxical: How plant peroxidases modify the cell wall. Trends in Plant Science, 9(11), 534–540.

    Article  CAS  PubMed  Google Scholar 

  • Passardi, F., Cosio, C., Penel, C., & Dunand, C. (2005). Peroxidases have more functions than a Swiss army knife. Plant Cell Reports, 24, 255–265.

    Article  CAS  PubMed  Google Scholar 

  • Ramesh Sundar, A., Viswanathan, R., Mohanraj, D., & Padmanaban, P. (1998). Role of oxidative enzymes in sugarcane and Colletotrichum falcatum went interaction. Acta phytopathologica et Entomologica Hungarica, 33(3–4), 297–304.

    Google Scholar 

  • Rivero, M., Furman, N., Mencaccia, N., Picca, P., Toum, L., Lentz, E., Bravo-Almonacid, F., & Mentaberry, A. (2012). Stacking of antimicrobial genes in potato transgenic plants confers increased resistance to bacterial and fungal pathogens. Journal of Biotechnology, 157, 334–343.

    Article  CAS  PubMed  Google Scholar 

  • Roy-Barman, S., Sautter, C., & Chattoo, B. B. (2006). Expression of the lipid transfer protein Ace- AMP1 in transgenic wheat enhances antifungal activity and defense responses. Transgenic Research, 15(4), 435–446.

    Article  CAS  PubMed  Google Scholar 

  • Sarowar, S., Kim, E. N., Kim, Y. J., Sung, H. O., Kim, D. K., Byung, K. H., & Jeong, S. S. (2005). Over expression of a pepper ascorbate peroxidase-like 1 gene in tobacco plants enhances tolerance to oxidative stress and pathogens. Plant Science, 169, 55–63.

    Article  CAS  Google Scholar 

  • Sels, J., Mathys, J., De Coninck, B. M., Cammue, B. P., & De Bolle, M. F. (2008). Plant pathogenesis-related (PR) proteins: A focus on PR peptides. Plant Physiology and Biochemistry, 46(11), 941–950.

    Article  CAS  PubMed  Google Scholar 

  • Senthilraja, G., Anand, T., Kennedy, J. S., Raguchander, T., & Samiyappan, R. (2013). Plant growth promoting rhizobacteria (PGPR) and entomopathogenic fungus bioformulation enhance the expression of defense enzymes and pathogenesis-related proteins in groundnut plants against leaf miner insect and collar rot pathogen. Physiological and Molecular Plant Pathology, 83, 10–19.

    Article  Google Scholar 

  • Slusarenko, A. J., Fraser, R. S. S., & Van Loon, L. C. (2000). Mechanisms of resistance to plant diseases (620 pp). Dordrecht: Kluwer Academic Publishers.

    Book  Google Scholar 

  • Sreeja, K., Anandaraj, M., & Bhai, R. S. (2016). In vitro evaluation of fungal endophytes of black pepper against Phytophthora capsici and Radopholus similis. Journal of Spices and Aromatic Crops, 25(2), 113–122.

    Google Scholar 

  • Stamler, R. A., Holguin, O., Dungan, B., Schaub, T., Sanogo, S., Goldberg, N., & Randall, J. J. (2015). BABA and Phytophthora nicotianae induce resistance to Phytophthora capsici in Chile pepper (Capsicum annuum). PloS One, 10(5), e0128327.

    Article  PubMed  PubMed Central  Google Scholar 

  • Taheri, P., & Tarighi, S. (2011). Cytomolecular aspects of rice sheath blight caused by Rhizoctonia solani. European Journal of Plant Pathology, 129(4), 511–528.

    Article  Google Scholar 

  • Thankamani, C. K. (2008). Black pepper. In V. A. Parthasarathy, K. Kandiannan, & V. Srinivasan (Eds.), Organic spices (p. 250). New Delhi: New India Publishing Agency.

    Google Scholar 

  • Thompson, C. E., Fernandes, C. L., De Souza, O. N., Salzano, F. M., Bonatto, S. L., & Freitas, L. B. (2006). Molecular modeling of pathogenesis-related proteins of family 5. Cell Biochemistry and Biophysics, 44(3), 385–394.

    Article  CAS  PubMed  Google Scholar 

  • Tripathi, A., Aggarwal, R., & Yadav, A. (2013). Differential expression analysis of defense-related genes responsive to Tilletia indica infection in wheat. Turkish Journal of Biology, l37, 606–613.

    Article  Google Scholar 

  • Umadevi, P., Suraby, E. J., Anandaraj, M., & Johnson, K. G. (2015). Selection of reference gene for transcript normalization and expression analysis of defense related gene in Piper nigrum -Phytophthora capsici pathosystem. In R. Dinesh, G. M. Senthil Kumar, R. Praveena, C. N. Biju, A. I. Bhat, & M. Anandaraj (Eds.), National symposium on “Understanding host-pathogen interaction through the science of omics” (p. 242). Kozhikode: ICAR-Indian Institute of spices research.

    Google Scholar 

  • Van Loon, L. C., Pierpoint, W. S., Boller, T. H., & Conejero, V. (1994). Recommendations for naming plant pathogenesis-related proteins. Plant Molecular Biology Reporter, 12(3), 245–264.

    Article  Google Scholar 

  • Vandana, V. V., Bhai, R. S., & Shamina, A. (2014). Biochemical defense responses of black pepper (Piper nigrum L.) lines to Phytophthora capsici. Physiological and Molecular Plant Pathology, 88, 18–27.

    Article  Google Scholar 

  • Vijesh Kumar, I. P., Johnson, G. K., & Anandaraj, M. (2016). Real-time quantitative RT-PCR of some defense response genes in Piper colubrinum challenge inoculated with Phytophthora capsici. International Journal of Agricultural Science and Research, 6(1), 69–78.

    Google Scholar 

  • Wang, J., Li, D., Zhang, Y., Zhao, Q., He, Y., & Gong. (2013). Defense responses of pepper (Capsicum annuum L.) infected with incompatible and compatible strains of Phytophthora capsici. European Journal Plant Pathology, 136, 625–638.

    Article  CAS  Google Scholar 

  • Wang, P., Liu, X., Guo, J., Liu, C., Fu, N., & Shen, H. (2015). Identification and expression analysis of candidate genes associated with defense responses to Phytophthora capsici in pepper line “PI 201234”. International Journal of Molecular Sciences, 16, 11417–11438.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woloshuk, C. P., Meulenhoff, J. S., Sela-Buurlage, M., Van den Elzen, P. J., & Cornelissen, B. J. (1991). Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. The Plant Cell, 3(6), 619–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zemanek, A. B., Ko, T. S., Thimmapuram, J., Hammerschlag, F. A., & Korban, S. S. (2002). Changes in β-1, 3-glucanase mRNA levels in peach in response to treatment with pathogen culture filtrates, wounding and other elicitors. Journal of Plant Physiology, 159(8), 877–889.

    Article  CAS  Google Scholar 

  • Zheng, H. Z., Kim, Y. W., Lee, H. J., Park, R. D., Jung, W. J., Kim, Y. C., Lee, S. H., Kim, T. H., & Kim, K. Y. (2004). Quantitative changes of PR proteins and antioxidant enzymes in response to Glomus intraradices and Phytophthora capsici in pepper (Capsicum annuum L.) plants. Journal of Microbiology and Biotechnology, 14(3), 553–562.

    CAS  Google Scholar 

  • Zheng, H. Z., Cui, C. I., Zhang, Y. T., Wang, D., Jing, Y., & Kim, K. Y. (2005). Active changes of lignification-related enzymes in pepper response to Glomus intraradices and/or Phytophthora capsici. Journal of Zhejiang University Science, 6B(8), 778–786.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was funded by the Kerala State Council for Science, Technology and Environment (KSCSTE), Council Order No. (T)364/FSHP/2010/CSTE, Thiruvananthapuram, Kerala, India. Authors acknowledge Director, ICAR-IISR, Kozhikode, Kerala, India for facilities provided. Authors are grateful to Dr. Johnson K George, Principal Scientist, ICAR-IISR, Kozhikode for providing primers for osmotin and GAPDH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Suseela Bhai.

Ethics declarations

Ethical statement

This research article is not submitted elsewhere for publication and this manuscript complies to the Ethical Rules applicable for this journal.

Additional information

Highlights

• The study was carried out in P. capsici susceptible (Sreekara) and resistant (04-P24, shows root resistance to the pathogen) black pepper lines.

• Differential expression of 3 PR gene - β-1,3-glucanase (PR–2), osmotin (PR-5) and cAPX (PR-9)- in response to P. capsici inoculation was studied here and cAPX gene was found to play vital role in P. capsici resistance in black pepper.

• In our previous paper published in the journal PMPP (Vandana et al. 2014), we elucidated the role of peroxidase in root resistance to P. capsici.

The above result was confirmed in this study revealing the role of cAPX in defense response to P. capsici.

Electronic supplementary material

ESM 1

(JPEG 241 kb)

ESM 2

(JPEG 236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vandana, V.V., Suseela Bhai, R. Differential expression of PR genes in response to Phytophthora capsici inoculation in resistant and susceptible black pepper (Piper nigrum L.) lines. Eur J Plant Pathol 150, 713–724 (2018). https://doi.org/10.1007/s10658-017-1319-1

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10658-017-1319-1

Keywords

Navigation